# Route 161 Corridor Study Volume II Concept Plan

Prepared for the Southeastern Connecticut Council of Governments

August 2023



Town of East Lyme Route 161 Corridor Study

State Project #044-0159 August 2023

## CONCEPT PLAN



1010 Wethersfield Avenue www.BETA-Inc.com

Route 161 Corridor Study Town of East Lyme *State Project #044-0159* 

## CONCEPT PLAN

Prepared by:BETA GROUP, INC.Prepared for:Southeastern Connecticut Council of Governments

August 2023

## TABLE OF CONTENTS

| 1.0 Introduction                                                        |
|-------------------------------------------------------------------------|
| 2.0 Proposed Improvements                                               |
| 2.1 Segment 1 – Route 156 (Main Street) to Smith Street3                |
| 2.2 Segment 2 – Smith Street to East Pattagansett Road7                 |
| 2.3 Segment 3 –East Pattagansett Road to Society Road9                  |
| 2.4 Segment 4 – Society Road to Industrial Park Road14                  |
| 2.5 Segment 5 – Industrial Park Road to Frontage Road16                 |
| 2.6 Segment 6 – Frontage Road to U.S. Route 1 (Boston Post Road) 18     |
| 2.7 Segment 7 –U.S. Route 1 (Boston Post Road) to East Lyme High School |
| 3.0 Traffic Operations                                                  |
| 4.0 Constraints                                                         |
| 4.1 Rights of Way                                                       |
| 4.2 Utilities                                                           |
| 4.3 Permitting                                                          |
| 5.0 Implementation Plan                                                 |
| 5.1 Near-Term Program                                                   |
| 5.2 Mid-Term Program                                                    |
| 5.3 Long-Term Program                                                   |
| 5.4 Program Summary                                                     |
| 5.5 Funding Opportunities                                               |
| 6.0 Access Management                                                   |

## LIST OF TABLES

- Table 1 Level of Service Criteria for Unsignalized Intersections
- Table 2 Level of Service Criteria for Signalized Intersections
- Table 3 Weekday PM Peak LOS and Delay
- Table 4 Saturday Midday Peak LOS and Delay
- Table 5 Anticipated Easements
- Table 6 Anticipated Utility Relocations
- Table 7 Environmental Impact Summary
- Table 8 Program Summary



### LIST OF FIGURES

- Figure 1 Project Area
- Figure 2 Proposed Cross Section, Segment 1
- Figure 3 Proposed Improvements, Segment 1
- Figure 4 Rendering, Downtown Niantic Bike Lanes and Pocket Parking
- Figure 5 Proposed Cross Section, Segment 2
- Figure 6 Proposed Improvements, Segment 2
- Figure 7 Proposed Cross Section, Segment 3
- Figure 8 Proposed Improvements, Segment 3
- Figure 9 Rendering, Shared Use Path at Gorton Pond
- Figure 10 Rendering, Scenic Outlook at Gorton Pond
- Figure 11 Proposed Cross Section, Segment 4
- Figure 12 Proposed Improvements, Segment 4
- Figure 13 Proposed Cross Section, Segment 5
- Figure 14 Proposed Improvements, Segment 5
- Figure 15 Proposed Cross Section, Segment 6
- Figure 16 Proposed Improvements, Segment 6
- Figure 17 Rendering, Shared Use Path and Bus Pull Out, South of U.S. Route 1
- Figure 18 Proposed Cross Section, Segment 7
- Figure 19 Proposed Improvements, Segment 7
- Figure 20 Access Management, Downtown Niantic
- Figure 21 Access Management Plan, Near Oswegatchie Hills Road
- Figure 22 Access Management Plan, Near East Pattagansett Road
- Figure 23 Access Management Plan, Society Road to Laurel Hill Drive
- Figure 24 Access Management Plan, Laurel Hill Drive to Damon Heights Road
- Figure 25 Access Management Plan, Damon Heights Road to Industrial Park Road
- Figure 26 Access Management Plan, Industrial Park Road to King Arthur Drive
- Figure 27 Access Management Plan, Frontage Road to U.S. Route 1 (Boston Post Road)
- Figure 28 Access Management Plan, U.S. Route 1 (Boston Post Road) to Frontage Road



## LIST OF APPENDICES

Appendix A – Meeting Minutes and Public Comments

- Appendix B Concept Plans
- Appendix C Capacity Analysis Reports
- Appendix D Environmental Permitting Overview
- Appendix E Construction Cost Estimates
- Appendix F Bicycle and Pedestrian Funding Opportunities



## **1.0 INTRODUCTION**

The Southeastern Connecticut Council of Governments (SCCOG), in cooperation with the Town of East Lyme and the Connecticut Department of Transportation (CTDOT) initiated the Route 161 Corridor Study to develop a conceptual transportation plan for a 3.7-mile-long section of Route 161 extending from the intersection of Route 156 (Main Street) northerly to East Lyme High School. The transportation plan aims to improve the Route 161 corridor by alleviating traffic congestion during peak travel hours, improving mobility for pedestrians and bicyclists, promoting healthy and environmentally friendly modes of travel, enhancing transit ridership, and improving safety for all users.

During the initial phase of the project, existing conditions were analyzed. This included a review of geometric characteristics, traffic volumes, travel speeds, vehicle classification, pedestrian and bicycle infrastructure, transit operations, crash history, environmental constraints, and traffic operations. Future traffic operations were also analyzed by forecasting peak hour traffic volumes for the year 2042 using CTDOT's Statewide travel demand model which estimates regional traffic demands based on anticipated changes in future land use and demographics throughout the region and state along with planned transportation projects impacting the corridor. These analyses were summarized in the Existing and Future Conditions Report.

Public input was critical to understanding the corridor's challenges and opportunities. Throughout the study process a wide range of strategies were utilized to engage residents, commuters, businesses, and other stakeholders. These included regular meetings with a Project Advisory Committee consisting of staff from SCCOG, the Town, CTDOT, transit districts, and residents; a project website with an interactive mapping tool, a virtual meeting room, and two public meetings. Findings of the Existing and Future Conditions Report were presented at the first



public meeting on October 27, 2022. At that meeting participants were invited to provide input on what features are working well along the corridor and what challenges they would most like to see addressed from the perspective of a driver, pedestrian, or bicyclist. At the second public meeting, held on April 27, 2023, the project team shared proposed improvements in draft format and solicited feedback from attendees which was then used to refine the proposed improvements discussed herein. Minutes from the public meeting and a summary of comments submitted through the project website are included in Appendix A.

The proposed improvements for the Route 161 corridor took into account major infrastructure upgrades associated with State Project #044-0156 which will address vehicular safety on I-95 at Interchange 74 as well as traffic operational concerns and safety for all roadway users on Route 161 in the vicinity of the exit



74 interchange ramps. State Project #044-0156's improvements include full reconstruction and widening of I-95 to accommodate revised ramp configurations, auxiliary lanes between exits 74 and 75 in each direction and the full replacement of the bridge over Route 161. The project will also address safety and traffic operations on Route 161 between Industrial Park Road and U.S. Route 1 (Boston Post Road) via full reconstruction and widening to provide turn lanes, wider shoulders, and sidewalk connectivity within the project limits. Construction on State Project #044-0156 began on April 3, 2023.

## 2.0 PROPOSED IMPROVEMENTS

Recommended transportation improvements were developed for each of the seven segments shown in Figure 1. The recommendations are separated into near-term (those that can be implemented within three-years), mid-term (three to seven year implementation timeline), and long-term (seven-plus year implementation timeline) improvements based on their complexity, cost, and benefit. Typical cross sections were developed for each segment. Conceptual plans and renderings were prepared for several key recommendations.



Figure 1: Project Area



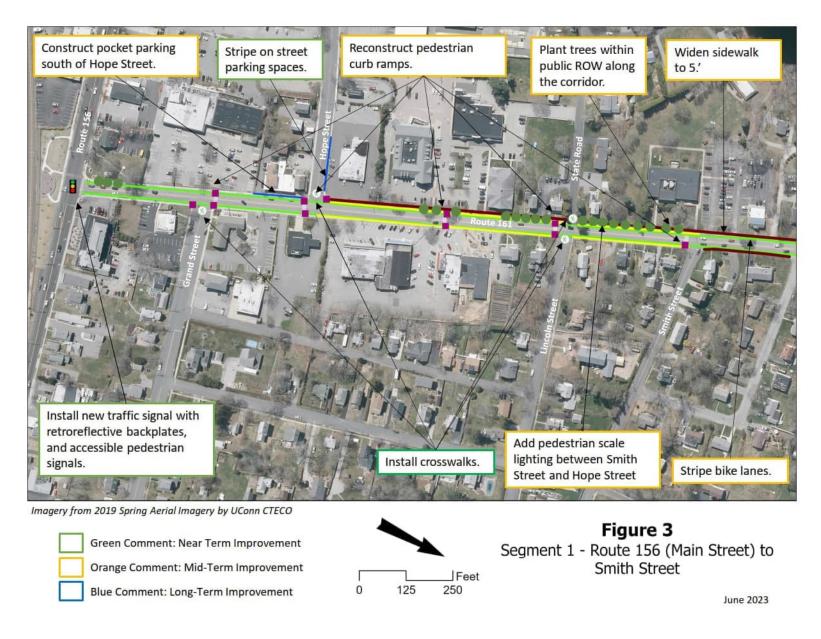
#### 2.1 SEGMENT 1 – ROUTE 156 (MAIN STREET) TO SMITH STREET

Figures 2 and 3 show the improvements developed for the Route 161 corridor segment between Route 156 (Main Street) and Smith Street. The improvements include:

Near-Term Improvements

- Stripe on-street parking spaces on Hope Street to better accommodate parking demand from visitors to local businesses.
- Install crosswalks across side streets with high pedestrian volumes including Grand Street, Hope Street, State Street, and Lincoln Street to enhance pedestrian safety.
- Install a new traffic signal at the Route 161 and Route 156 (Main Street) intersection. Incorporate retroreflective backplates to enhance visibility and mitigate rear end collisions, and accessible pedestrian signals to improve accessibility for visually impaired pedestrians.

Mid-Term Improvements


- Stripe bike lanes along both sides of Route 161 to promote bicycle use and enhance safety for bicyclists. (See Appendix B for a concept plan and Figure 4 for a rendering of the bike lanes)
- Construct a pocket parking area on the west of the corridor, just south of Hope Street, shifting the existing on-street parking outside of the existing curb line to accommodate the proposed bike lanes. The pocket parking area will also improve sight distances at the intersection and allow drivers to have a clearer view of oncoming traffic before executing left turns out of Hope Street. (See Appendix B for a concept plan and Figure 4, for a rendering of the pocket parking area.)





- Install pedestrian scale lighting between Smith Street and Hope Street to enhance pedestrian visibility and walkability.
- Widen the existing sidewalk on the west side of Route 161 to provide suitable passing spaces and enhance walkability and mobility for all users.
- Plant street trees within the public right-of-way to enhance the aesthetics of the downtown Niantic area and promote survival of local pollinators.
- Reconstruct pedestrian curb ramps at various locations in accordance with the U.S. Access Board's Proposed Public Rights-of-Way Accessibility Guidelines to improve mobility for all users.



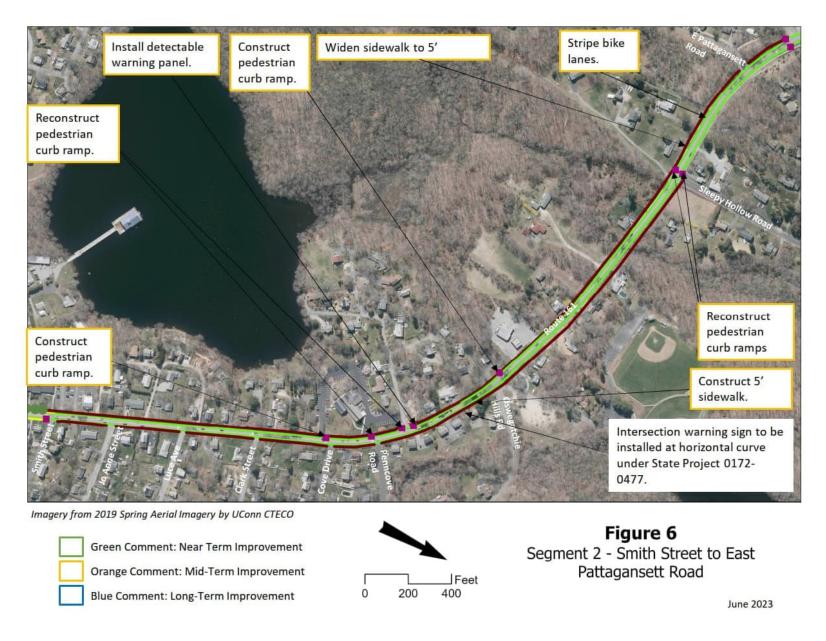






#### 2.2 SEGMENT 2 – SMITH STREET TO EAST PATTAGANSETT ROAD

Figures 5 and 6 show the improvements developed for the Route 161 corridor segment between Smith Street and East Pattagansett Road. The improvements include:


Mid-Term Improvements

- Construct pedestrian curb ramps where none are provided including the Clark Street and Oswegatchie Hills Road crossings to improve mobility for all users.
- Reconstruct pedestrian curb ramps and install detectable warning panels at various locations in accordance with the U.S. Access Board's Proposed Public Rights-of-Way Accessibility Guidelines to improve mobility for all users.
- Stripe bike lanes along both sides of Route 161 to promote bicycle use and enhance safety for bicyclists.
- Construct new sidewalk along the east side of Route 161 between Smith Street and Sleepy Hollow Road to create an improved pedestrian connection between Veterans Memorial Field, Oswegatchie Hills Nature Preserve, and the downtown Niantic area.
- Widen the existing sidewalk along the west side of Route 161 to provide suitable passing spaces and enhance walkability and mobility for all users.



Credit: Streetmix







#### 2.3 SEGMENT 3 – EAST PATTAGANSETT ROAD TO SOCIETY ROAD

Figures 7 and 8 show the improvements developed for the Route 161 corridor segment between East Pattagansett Road and Society Road. The improvements include:

Mid-Term Improvements

- Install speed feedback signs to discourage speeding.
- Restripe the existing shoulder with 6"-wide shoulder markings to mitigate crashes involving pedestrians, bicyclists and older drivers, and to discourage speeding.
- Reconstruct pedestrian curb ramps at various locations in accordance with the U.S. Access Board's Proposed Public Rights-of-Way Accessibility Guidelines to improve mobility for all users.
- Install new traffic signals at the Route 161/East Pattagansett Road and Route 161/Roxbury Road intersections. Provide separate traffic signal controllers at each intersection allowing each signal to operate independently, improving traffic operations, and reducing delay. Incorporate Leading Pedestrian Interval (LPI) phasing and accessible pedestrian signals at each intersection to enhance pedestrian safety and improve mobility for all users. At the Roxbury Road signal install a dedicated northbound left turn lane and a bicycle box to facilitate transition from the bicycle lanes south of the intersection to the shared use path north of the intersection.
- A roundabout was also considered for the Route 161/East Pattagansett Road intersection to improve operations, reduce speeds, and create a gateway into downtown Niantic. Traffic signal improvements were selected, however, as the preferred alternative in part due to concern that the roundabout would eliminate metering created by the traffic signal and result in fewer gaps where residents downstream of the intersection could safely make a left turn maneuver out of their driveways. (See Appendix B for a concept plan and rendering of the proposed roundabout.)



Credit: Streetmix



- Install crosswalks across both roadways at the intersection of Route 161 and Roxbury Road to enhance pedestrian safety.
- Install a crosswalk across Route 161 at Oak Hill Drive to improve access to the proposed sidewalk and overlook area at Gorton Pond.
- Widen the existing sidewalk along the east side of Route 161 to provide suitable passing spaces and enhance walkability and mobility for all users.

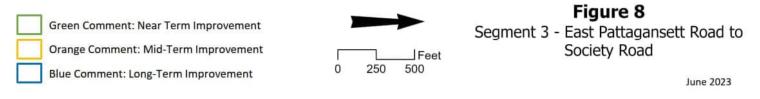
Long-Term Improvements

• Install a 10'-wide shared use path along the west side of Route 161 to promote nonmotorized modes of travel such as walking and biking. Retaining walls will be necessary to support the shared use path along the south end of Gorton Pond. An overlook area is recommended to accommodate fishing, sight-seeing, or other recreational activities. (See Appendix B for a concept plan and Figures 9 and 10 for renderings of the proposed shared use path.)



Install 6"-wide shoulder markings.

Install crosswalk


across Route 161

# Install new traffic signal with NB left turn lane, crosswalk on Roxbury Road, LPI phasing and licycle box. Construct retaining walls to support shared use path and provide scenic overlook. Cortan Pord

Widen sidewalk to 5'.

Imagery from 2019 Spring Aerial Imagery by UConn CTECO

Stripe bike lanes.



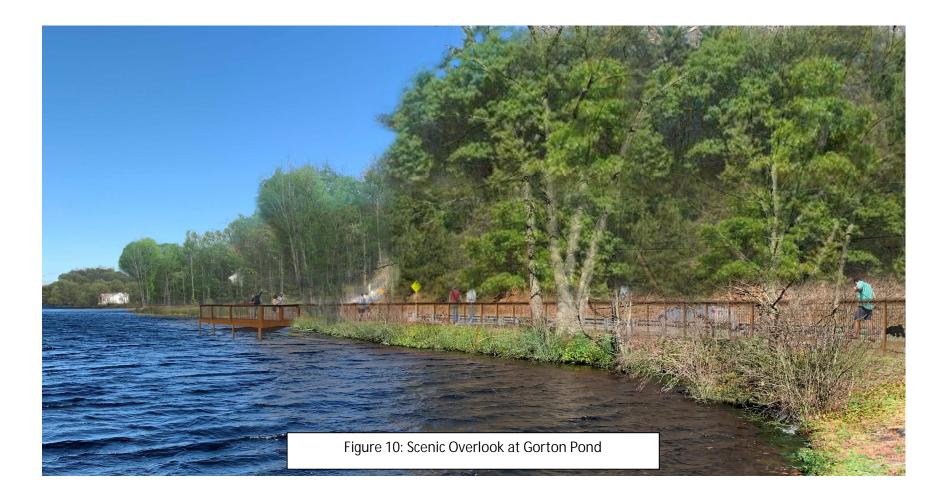
Reconstruct

pedestrian

curb ramp.



Reconstruct


pedestrian

curb ramp.

Route 161 Corridor Study Town of East Lyme

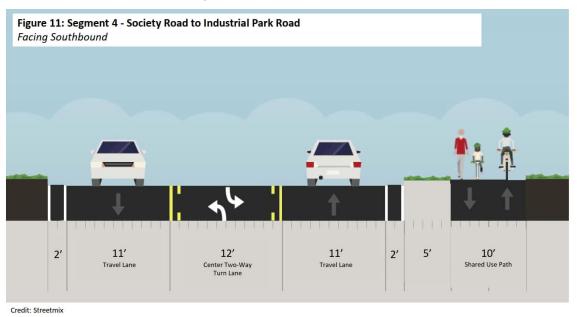








#### 2.4 Segment 4 – Society Road to Industrial Park Road


Figures 11 and 12 show the improvements developed for the Route 161 corridor segment between Society Road and Industrial Park Road. The improvements include:

Mid-Term Improvements

- At the intersection of Route 161 and Society Road install accessible pedestrian signals, implement Leading Pedestrian Interval (LPI) phasing, and stripe a crosswalk across Society Road to improve pedestrian safety and mobility for all users.
- Construct pedestrian curb ramps where none are provided including the Laurel Hill Drive and Damon Heights Road crossings to improve mobility for all users.
- Reconstruct pedestrian curb ramps and install detectable warning panels at various locations in accordance with the U.S. Access Board's Proposed Public Rights-of-Way Accessibility Guidelines to improve mobility for all users.
- Install an intersection warning sign on the northbound approach to Laurel Hill Drive to alert drivers to the presence of an intersection with limited sight distances and improve safety.
- Restripe the roadway to incorporate a two-way left turn lane to improve flow and reduce crashes.
- Realign the Laurel Hill Drive approach to Route 161 approximately 150 feet southward to reduce the skewed angle, improve sight distance, and mitigate crashes.
- Widen the existing sidewalk along the east side of Route 161 to provide suitable passing spaces and enhance walkability and mobility for all users.

Long-Term Improvements

• Install a 10'-wide shared use path along the west side of Route 161 to promote nonmotorized modes of travel such as walking and biking. Replace the existing culvert south of Dunkin' to accommodate the shared use path.



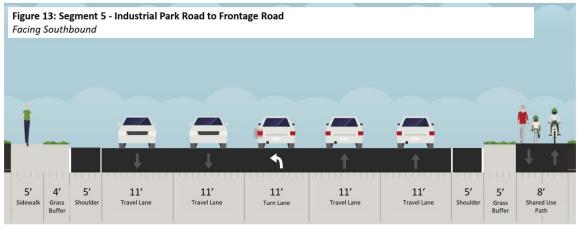
The second Construct Install pedestrian Install detectable pedestrian Install 10' shared use signals with APS and warning panel. curb ramp. path with raised or LPI phasing. colorized crossings at driveways. Install two-way left turn lane from Laurel Hill Drive to **Industrial Park** Widen Road sidewalk to 5' Construct **Realign Laurel Hill** pedestrian Reconstruct Install crosswalk Install Reconstruct Drive approach to curb ramp. pedestrian across Society Road. intersection pedestrian curb ramps. intersection. warning sign. curb ramp. 14 Imagery from 2019 Spring Aerial Imagery by UConn CTECO Figure 12 Green Comment: Near Term Improvement Segment 4 - Society Road to Industrial Orange Comment: Mid-Term Improvement Park Road Feet 0 175 350

June 2023



Blue Comment: Long-Term Improvement

#### 2.5 SEGMENT 5 – INDUSTRIAL PARK ROAD TO FRONTAGE ROAD

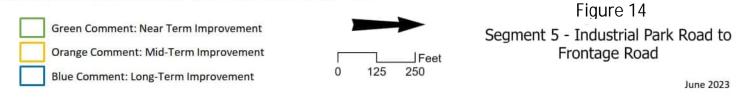

Figures 13 and 14 show the improvements developed for the Route 161 corridor segment between Industrial Park Road and Frontage Road. The improvements include:

Mid-Term Improvements

- Install a crosswalk with pedestrian signals across Industrial Park Road and implement concurrent pedestrian phasing to improve pedestrian safety.
- Incorporate adaptive signal control at the new traffic signals to be installed at Industrial Park Road, the Exit 74 Off Ramp, and King Arthur Drive under the I-95 Interchange 74 Improvement project. Adaptive signal control can allow the signals to better respond to changing traffic volumes and reduce delay on the Route 161 corridor when traffic volumes increase due to incidents on I-95 or seasonal tourism.
- Install a bus shelter northeast of Chapman Wood Road to promote transit use.

Long-Term Improvements

• Install an 8'-wide shared use path along the west side of Route 161 to promote nonmotorized modes of travel such as walking and biking. A narrower shared use path is recommended within this segment due to limited width below the I-95 bridge and to minimize impacts to commercial parking areas.




Credit: Streetmix



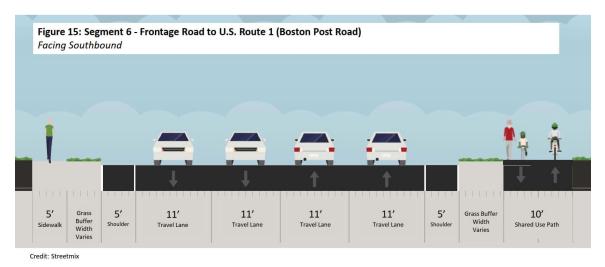
#### New traffic signal to be 5' concrete sidewalk to Bus shelter to be Install crosswalk across installed at relocated Iinstalled in new be constructed under Industrial Park Road and 95 NB Off Ramp under State Project No. 44-156. commuter lot under implement concurrent State Project No. 44-156. State Project No. 44-156 pedestrian phasing. Oute 16 Incorporate adaptive Install bus shelter. signal control. Raised median island to New traffic signal to be Incorporate adaptive Install 8' shared use path be installed under State installed under State with raised or colorized signal control. Project No. 44-156. Project No. 44-156. crossings at driveways

Imagery from 2019 Spring Aerial Imagery by UConn CTECO and Interchange 74 Plan Set

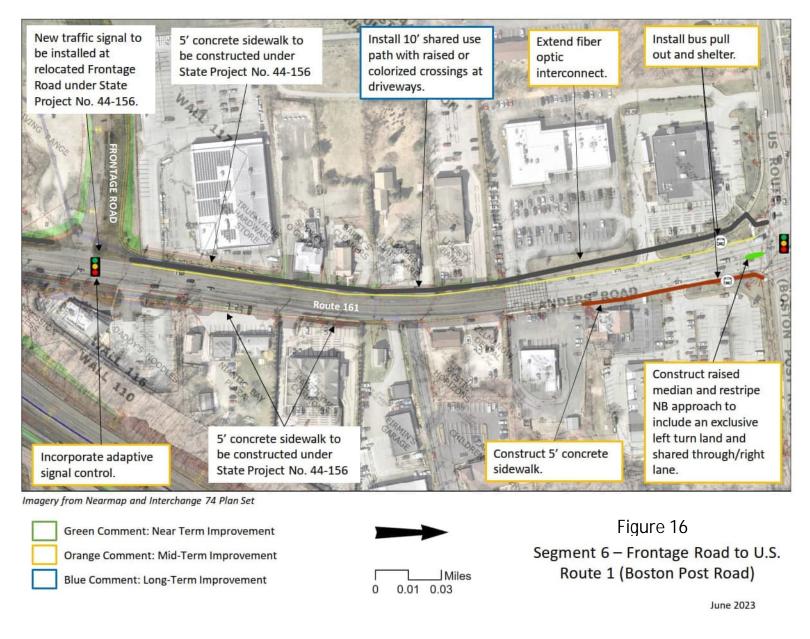




#### 2.6 SEGMENT 6 - FRONTAGE ROAD TO U.S. ROUTE 1 (BOSTON POST ROAD)


Figures 15 and 16 show the improvements developed for the Route 161 corridor segment between Frontage Road and U.S. Route 1 (Boston Post Road). The improvements include:

Mid-Term Improvements


- Incorporate adaptive signal control at the new traffic signal to be installed at Frontage Road under the I-95 Interchange 74 Improvement project. Adaptive signal control can allow the signal to better respond to changing traffic volumes and reduce delay on the Route 161 corridor when traffic volumes increase due to incidents on I-95 or seasonal tourism.
- Install fiber optic interconnect to facilitate communication between the traffic signal at U.S. Route 1 (Boston Post Road) and the signals at Frontage Road, King Arthur Drive, the I-95 Exit 74 Off Ramp, and Industrial Park Road.
- Construct a new 5'-wide concrete sidewalk on the east side of the corridor in front of Latimer Brook Commons to fill a gap in the existing sidewalk network and improve pedestrian connectivity.
- Install bus pull outs on both sides of the corridor just south of U.S. Route 1 (Boston Post Road) where buses can pick up and drop off passengers without impeding the flow of traffic. Install a bus shelter at each pull out to promote transit use. (See Appendix B for a concept plan and Figure 17 for a rendering of the proposed bus pull outs and shelters.)
- Construct a raised median island on the southern leg of the Route 161/U.S. Route 1 (Boston Post Road) intersection to enhance pedestrian safety between the proposed bus shelters. Restripe the northbound approach to include an exclusive left turn lane and shared through/right turn lane to accommodate the median island.

Long-Term Improvements

• Install a 10'-wide shared use path along the west side of Route 161 to promote nonmotorized modes of travel such as walking and biking. (See Appendix B for a concept plan and Figure 17 for a rendering of the proposed shared use path.)





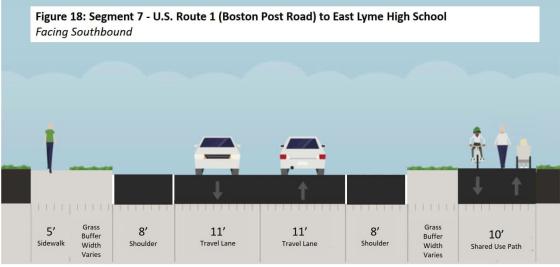








#### 2.7 SEGMENT 7 – U.S. ROUTE 1 (BOSTON POST ROAD) TO EAST LYME HIGH SCHOOL


Figures 18 and 19 show the improvements developed for the Route 161 corridor segment between U.S. Route 1 (Boston Post Road) and East Lyme High School. The improvements include:

Mid-Term Improvements

- Implement a left-turn lane on the northbound approach to East Lyme High School to mitigate delay and enhance safety during the morning arrival period.
- Incorporate adaptive signal control at the Route 161/U.S. Route 1 (Boston Post Road) traffic signal. Adaptive signal control can allow the signal to better respond to changing traffic volumes and reduce delay on the Route 161 corridor when traffic volumes increase due to incidents on I-95 or seasonal tourism.

Long-Term Improvements

• Install a 10'-wide shared use path along the west side of Route 161 to promote nonmotorized modes of travel such as walking and biking.









- Green Comment: Near Term Improvement
  Orange Comment: Mid-Term Improvement
  - Blue Comment: Long-Term Improvement

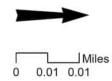



Figure 19 Segment 7–U.S. Route 1 (Boston Post Road) to East Lyme High School

June 2023



## 3.0 TRAFFIC OPERATIONS

Existing and Future No Build traffic models were previously developed using Synchro software (Version 11) and summarized in the Existing and Future Conditions report. The Existing conditions model evaluated traffic operations at fourteen corridor intersections to assess the level of traffic delays and congestion that are currently being experienced during the weekday afternoon and Saturday midday peak hours. The Future No Build conditions model evaluated traffic congestions during these peak periods for the year 2042, taking into account anticipated changes in future land use and demographics as well as planned transportation projects impacting the corridor.

The Existing and Future Conditions Report included a summary of Level of Service and delay for each intersection and each peak period. For intersections, six levels of service (LOS), "A"-"F", have been established with "A" representing very good operation and "F" representing very poor operation. For signalized and unsignalized intersections, level of service is defined in terms of average delay per vehicle and is computed for individual intersection lane groups. Delay is a measure of driver discomfort, frustration, fuel consumption, and lost travel time. The relationship for unsignalized and signalized intersections are summarized in Table 1 and Table 2, respectively.

| Unsignalized Intersection<br>Criteria<br>Average Total Delay<br>(Seconds per Vehicle)General DescriptionA< 10.0Free FlowB10.1 to 15.0Stable flow (slight delays)C15.1 to 25.0Stable flow (acceptable delays)D25.1 to 35.0Approaching unstable flow (tolerable delay)E35.1 to 50.0Unstable flow (intolerable delay) |     | Table T: Level of Service Ch    | terra for Unsignalized Intersections        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------------------|---------------------------------------------|
| B10.1 to 15.0Stable flow (slight delays)C15.1 to 25.0Stable flow (acceptable delays)D25.1 to 35.0Approaching unstable flow (tolerable delay)                                                                                                                                                                       | LOS | Criteria<br>Average Total Delay | General Description                         |
| C15.1 to 25.0Stable flow (acceptable delays)D25.1 to 35.0Approaching unstable flow (tolerable delay)                                                                                                                                                                                                               | А   | < 10.0                          | Free Flow                                   |
| D 25.1 to 35.0 Approaching unstable flow (tolerable delay)                                                                                                                                                                                                                                                         | В   | 10.1 to 15.0                    | Stable flow (slight delays)                 |
|                                                                                                                                                                                                                                                                                                                    | С   | 15.1 to 25.0                    | Stable flow (acceptable delays)             |
| E 35.1 to 50.0 Unstable flow (intolerable delay)                                                                                                                                                                                                                                                                   | D   | 25.1 to 35.0                    | Approaching unstable flow (tolerable delay) |
|                                                                                                                                                                                                                                                                                                                    | Е   | 35.1 to 50.0                    | Unstable flow (intolerable delay)           |
| F > 50.0 Forced flow (jammed)                                                                                                                                                                                                                                                                                      | F   | > 50.0                          | Forced flow (jammed)                        |

#### Table 1: Level of Service Criteria for Unsignalized Intersections

| Table 2: Level | of Service  | Criteria | for Siana  | alized | Intersections   |
|----------------|-------------|----------|------------|--------|-----------------|
| 10010 2. 20101 | 01 001 1100 | onnonia  | ioi oigiic | mzou i | 11101 300110113 |

| LOS | Signalized Intersection Criteria<br>Average Total Delay<br>(Seconds per Vehicle) | General Description                         |
|-----|----------------------------------------------------------------------------------|---------------------------------------------|
| А   | < 10.0                                                                           | Free Flow                                   |
| В   | 10.1 to 20.0                                                                     | Stable flow (slight delays)                 |
| С   | 20.1 to 35.0                                                                     | Stable flow (acceptable delays)             |
| D   | 35.1 to 55.0                                                                     | Approaching unstable flow (tolerable delay) |
| E   | 55.1 to 80.0                                                                     | Unstable flow (intolerable delay)           |
| F   | > 80.0                                                                           | Forced flow (jammed)                        |

The proposed improvements identified in Chapter 2 were evaluated as part of the Future Build traffic model which examines their impact on Level of Service and delay during each peak period under year



2042 traffic conditions. Level of Service and delay for the Existing, Future No Build, and Future Build traffic models are summarized in Table 3 (Weekday PM Peak) and Table 4 (Saturday Midday Peak). For signalized locations the overall intersection Level of Service and delay are shown. For unsignalized locations the Level of Service and delay for the stop-controlled approach are shown. Future Build capacity analysis (Synchro) reports are provided in Appendix C.

|                                               |          | Future No |              |
|-----------------------------------------------|----------|-----------|--------------|
| Intersecting Street                           | Existing | Build     | Future Build |
| Route 156 (Main Street)                       | C (30)   | D (42)    | D (37)       |
| Hope Street - Eastbound Approach              | C (19)   | C (24)    | C (24)       |
| State Road - Eastbound Approach               | C (20)   | C (23)    | C (23)       |
| Lincoln Street - Westbound Approach           | C (17)   | C (19)    | C (19)       |
| Oswegatchie Hills Road - Southbound Approach  | C (18)   | C (23)    | C (23)       |
| Sleepy Hollow Road - Southbound Approach      | C (19)   | C (22)    | C (22)       |
| East Pattagansett Road and Chapman Woods Road | B (14)   | C (20)    | B (15)       |
| Roxbury Road                                  | C (33)   | F (92)    | B (17)       |
| Society Road                                  | B (18)   | C (24)    | B (19)       |
| Laurel Hill Drive - Westbound Approach        | D (32)   | E (47)    | E (44)       |
| Industrial Park Road and Chapman Woods Road   | B (18)   | C (25)    | C (25)       |
| I-95 NB Exit Ramp and Burger King Driveway    | N/A      | B (14)    | B (14)       |
| King Arthur Drive                             | C (21)   | A (7)     | A (7)        |
| Frontage Road to I-95 SB Ramps                | B (17)   | B (13)    | B (13)       |
| U.S. Route 1 (Boston Post Road)               | C (29)   | D (36)    | D (45)       |
| East Lyme High School - Eastbound Approach    | C (23)   | D (29)    | D (30)       |

#### Table 3 - Weekday PM Peak LOS and Delay

| Table 4 - Saturday | Midday Peak LOS and Delay          |
|--------------------|------------------------------------|
| rabio i bataraaj   | initiada y i carte e cita e cita y |

|                                               | -        | Future No |              |
|-----------------------------------------------|----------|-----------|--------------|
| Intersecting Street                           | Existing | Build     | Future Build |
| Route 156 (Main Street)                       | C (31)   | D (41)    | C (34)       |
| Hope Street - Eastbound Approach              | C (24)   | D (26)    | D (26)       |
| State Road - Eastbound Approach               | C (21)   | C (24)    | C (24)       |
| Lincoln Street - Westbound Approach           | C (16)   | C (18)    | C (18)       |
| Oswegatchie Hills Road - Southbound Approach  | C (19)   | C (25)    | C (25)       |
| Sleepy Hollow Road - Southbound Approach      | C (17)   | C (18)    | C (18)       |
| East Pattagansett Road and Chapman Woods Road | B (13)   | B (15)    | B (11)       |
| Roxbury Road                                  | C (22)   | D (45)    | A (9)        |
| Society Road                                  | B (18)   | B (20)    | B (20)       |
| Laurel Hill Drive - Westbound Approach        | D (28)   | E (42)    | E (42)       |
| Industrial Park Road and Chapman Woods Road   | B (14)   | B (12)    | B (12)       |
| I-95 NB Exit Ramp and Burger King Driveway    | N/A      | B (13)    | B (13)       |
| King Arthur Drive                             | C (21)   | A (6)     | A (6)        |
| Frontage Road to I-95 SB Ramps                | B (17)   | B (13)    | B (13)       |



| U.S. Route 1 (Boston Post Road)            | C (24) | C (27) | D (36) |
|--------------------------------------------|--------|--------|--------|
| East Lyme High School - Eastbound Approach | C (17) | C (18) | C (17) |

At the Route 156 (Main Street) intersection, installing a new traffic signal with optimized timings improves traffic operations from a LOS D with 42 seconds of average delay to a LOS D with 34 seconds of average delay during future conditions for the weekday afternoon peak hour. Traffic operations are improved from a LOS D with 41 seconds of average delay to a LOS C with 32 seconds of average delay during future conditions for the Saturday midday peak hour.

At the East Pattagansett Road and Chapman Woods Road intersection installing a new traffic signal that operates independently from Roxbury Road improves traffic operations from a LOS C with 20 seconds of average delay to a LOS B with 15 seconds of average delay during future conditions for the weekday afternoon peak hour. Traffic operations are improved from a LOS B with 15 seconds of average delay to a LOS B with 11 seconds of average delay during future conditions for the Saturday midday peak hour. *With a roundabout this intersection would operate at LOS C with 19 seconds of average delay during future conditions for both the weekday afternoon and Saturday midday peak hours.* 

At the Roxbury Road intersection installing a new traffic signal that incorporates a northbound left turn lane improves traffic operations from a LOS F with 92 seconds of average delay to a LOS B with 17 seconds of average delay during future conditions for the weekday afternoon peak hour. Traffic operations are improved from a LOS D with 45 seconds of average delay to a LOS A with 9 seconds of average delay during future conditions for the Saturday midday peak hour.

At the Route U.S. Route 1 (Boston Post Road) intersection eliminating a turn lane on the northbound approach to accommodate the proposed pedestrian refuge island worsens traffic operations from a LOS D with 36 seconds of average delay to a LOS D with 45 seconds of average delay during future conditions for the weekday afternoon peak hour. Traffic operations worsen with from a LOS C with 27 seconds of average delay to a LOS D with 36 seconds of average delay for the Saturday midday peak hour. Although traffic operations worsen the proposed pedestrian refuge island is expected to facilitate safer crossings for pedestrians.



## 4.0 CONSTRAINTS

Potential constraints associated with implementation of the proposed improvements identified in Chapter 2 include rights of way, utilities, and permitting.

#### 4.1 RIGHTS OF WAY

The proposed improvements for the Route 161 corridor are generally included within the existing rights of way. Rights of way boundaries are located as close as 4-feet as far as 125-feet from the existing curb on the west side of the corridor. Along the east side of the corridor the rights of way boundary varies from 3-feet to 90-feet from the existing curb. Improvements involving traffic signals, pavement markings, signage, bus shelters, parking, or modifications to existing sidewalks can generally be implemented without easements. However, the following easements are anticipated to accommodate the proposed shared use path, new sidewalks, and roadway realignment:

| Segment | Proposed<br>Improvement | Impacted Property                  | Approximate<br>Easement (sf) |
|---------|-------------------------|------------------------------------|------------------------------|
| 2       | 5' Sidewalk             | 143 Pennsylvania Ave (Residential) | 200 s.f.                     |
| 2       | 5' Sidewalk             | 149 Pennsylvania Ave (Residential) | 150 s.f.                     |
| 2       | 5' Sidewalk             | 151 Pennsylvania Ave (Residential) | 175 s.f.                     |
| 2       | 5' Sidewalk             | 165 Pennsylvania Ave (Residential) | 500 s.f.                     |
| 2       | 5' Sidewalk             | 167 Pennsylvania Ave (Residential) | 200 s.f.                     |
| 2       | 5' Sidewalk             | 171 Pennsylvania Ave (Residential) | 300 s.f.                     |
| 2       | 5' Sidewalk             | 175 Pennsylvania Ave (Residential) | 200 s.f.                     |
| 2       | 5' Sidewalk             | 177 Pennsylvania Ave (Residential) | 500 s.f.                     |
| 2       | 5' Sidewalk             | 181 Pennsylvania Ave (Residential) | 550 s.f.                     |
| 3       | 10' Shared Use Path     | 4 Flanders Road (Residential)      | 100 s.f.                     |
| 3       | 10' Shared Use Path     | 44 Flanders Road (Residential)     | 100 s.f.                     |
| 3       | 10' Shared Use Path     | 48 Flanders Road (Residential)     | 240 s.f.                     |
| 3       | 10' Shared Use Path     | 56 Flanders Road (Residential)     | 700 s.f.                     |
| 3       | 10' Shared Use Path     | 64 Flanderes Road (Residential)    | 500 s.f.                     |
| 3       | 10' Shared Use Path     | 68 Flanders Road (Residential)     | 300 s.f.                     |
| 3       | 10' Shared Use Path     | 72 Flanders Road (Residential)     | 700 s.f.                     |
| 3       | 10' Shared Use Path     | 76 Flanders Road (Residential)     | 1000 s.f.                    |
| 3       | 10' Shared Use Path     | 78 Flanders Road (Residential)     | 250 s.f.                     |
| 3       | 10' Shared Use Path     | 84 Flanders Road (Residential)     | 400 s.f.                     |
| 3       | 10' Shared Use Path     | 88 Flanders Road (Residential)     | 150 s.f.                     |

| Table 5 – Antic | ipated Easements |
|-----------------|------------------|
|-----------------|------------------|



| Segment | Proposed<br>Improvement      | Impacted Property                             | Approximate<br>Easement (sf) |
|---------|------------------------------|-----------------------------------------------|------------------------------|
| 3       | 10' Shared Use Path          | 106 Flanders Road (Residential)               | 150 s.f.                     |
| 3       | 10' Shared Use Path          | 108 Flanders Road (Residential)               | 100 s.f.                     |
| 4       | 10' Shared Use Path          | 170 Flanders Road LLC (Midway Plaza)          | 500 s.f.                     |
| 4       | 10' Shared Use Path          | 222 Flanders Road (Monaco Ford)               | 350 s.f.                     |
| 4       | 10' Shared Use Path          | 226 Flanders Road (Iliano's)                  | 275 s.f.                     |
| 4       | 10' Shared Use Path          | 228 Flanders Road (Iliano's)                  | 425 s.f.                     |
| 4       | 10' Shared Use Path          | 230 Flanders Road (Future Car Wash)           | 350 s.f.                     |
| 4       | Realign Laurel Hill<br>Drive | 155 Flanders Road (Residential)               | 450 s.f.                     |
| 5       | 8' Shared Use Path           | 248 Flanders Road (Stop & Shop)               | 400 s.f.                     |
| 5       | 8' Shared Use Path           | 250 Flanders Road (L&L East Lyme)             | 1300 s.f.                    |
| 5       | 8' Shared Use Path           | 252 Flanders Road (Monro and Stop & Shop Gas) | 650 s.f.                     |

Additionally, rights to grade and rights to construct driveways may be required at various locations to facilitate construction of the proposed sidewalks and shared use path.

#### 4.2 UTILITIES

Overhead and underground utilities including electrical, cable, telephone, water, and sewer lines are located throughout the Route 161 corridor. It is desirable to minimize or avoid impacts to utilities to minimize project costs and streamline construction schedules. The following utility relocations are anticipated to be necessary to accommodate the proposed improvements discussed in Chapter 2:

|         | Proposed                |                                                                 |                                                           |
|---------|-------------------------|-----------------------------------------------------------------|-----------------------------------------------------------|
| Segment | Improvement             | Location                                                        | Approximate Easement (sf)                                 |
| 2       | 5' Sidewalk             | Luce Avenue to Penncove<br>Road (east side)                     | Relocate 6 utility poles and overhead cables              |
| 2       | 5' Sidewalk             | Oswegathcie Hills Road to<br>Sleepy Hollow Road (north<br>side) | Relocate 6 utility poles and overhead cables              |
| 3       | 10' Shared Use Path     | Roxbury Road to Society Road<br>(west side)                     | Relocate 5 hydrants, 3 utility poles, and overhead cables |
| 3       | 10' Shared Use Path     | Society Road to Industrial<br>Park Road (west side)             | Relocate 5 utility poles and<br>overhead cables           |
| 3       | Realign Laurel Hill Dr. | Laurel Hill Dr. (south side)                                    | Relocate 1 utility pole and<br>overhead cables            |

#### Table 6 – Anticipated Utility Relocations



|         | Proposed            |                           |                              |
|---------|---------------------|---------------------------|------------------------------|
| Segment | Improvement         | Location                  | Approximate Easement (sf)    |
|         |                     | Industrial Park Road to   | Relocate 1 utility pole and  |
| 5       | 8' Shared Use Path  | Frontage Road (west side) | overhead cable               |
|         |                     | U.S. Route 1 to East Lyme | Relocate 2 utility poles and |
| 7       | 10' Shared Use Path | High Scholl (west side)   | overhead cable               |

#### 4.3 PERMITTING

Below is a brief overview of the environmental context of each of the segments in the project area and the project's impacts to various environmental resources. A field visit was conducted to confirm the presence of wetlands along the Corridor on March 17, 2023. Table 7 provides a summary of the various environmental resources present within each segment.

|                           | Seg. 1 | Seg. 2 | Seg. 3 | Seg. 4 | Seg. 5 | Seg. 6       | Seg. 7 |
|---------------------------|--------|--------|--------|--------|--------|--------------|--------|
| Wetlands and Watercourses |        | √*     | ~      | √*     |        |              |        |
| Upland Review Area        | ✓      | ✓      | √      | ✓      | √      | √            | ✓      |
| NDDB Habitat              | ✓      | ~      | ✓      |        |        |              |        |
| Floodplain                |        |        | √      |        |        |              |        |
| Aquifer Protection Area   |        |        | √      | ✓      | √      | $\checkmark$ | ✓      |
| Historic Structures**     |        |        |        |        |        |              |        |
| Coastal Management Area   | ~      |        |        |        |        |              |        |

Table 7 - Environmental Impact Summary

\*Segments marked with an asterisk require a formal delineation to confirm whether the project will impact wetlands or watercourses.

\*\* To determine the presence of historic structures in the project corridor, the Historic Property Database provided by the State Historic Preservation Office (SHPO) was consulted.

Given the impacts associated with the proposed improvements and because it is anticipated that CTDOT funding will be pursued for implementation, the following environmental permits will be required to complete permitting for each of the Project segments.

- Town of East Lyme Inland Wetlands Permit for <u>all</u> Segments;
- Self-Verification Notification Form or Pre-Construction Notification under the US Army Corps of Engineers Section 404 Connecticut General Permits 17A for Segment 3, and potentially Segments 2 and 4, depending on final impacts;
- Submission of the Land and Water Resource Division (LWRD) License Application (Form L) to CTDEEP for Inland Wetlands and Watercourses and required attachments for Segment 3, and potentially Segments 2 and 4. Coordination with CTDEEP will be conducted during preliminary design to confirm CTDEEP filing requirements;
- NDDB Consultation Submission for Segments 1, 2 and 3;



- DEEP Stormwater Permit for the Project as a whole, as earth disturbance is anticipated to exceed two acres;
- Coastal Management Act Site Plan Review for Segment 1;
- East Lyme Floodplain Development Permit Application for Segment 3; and
- As a state-funded Project, the work will require review and confirmation that the Project will not have an effect or adverse effect on historic and / or archaeological resources. A Project Notification Form is required to be submitted to CT State Historic Preservation Office (SHPO), as required for state-funded projects, to comply with the Connecticut Environmental Policy Act (CEPA).

Additional information on the environmental context, impacts and considerations associated with each segment is included in the Environmental Permitting Overview memorandum in Appendix D.



## 5.0 IMPLEMENTATION PLAN

The proposed improvements identified in Chapter 2 may be implemented through a series of ten potential projects. An implementation timeline has been developed based on the complexity, cost, and benefit of each project with each project being categorized as near-term, mid-term, or long-term.

Approximate construction costs have been identified for each project based on comparable projects and similar work. The planning-level construction costs are reported in 2023 dollars. Itemized construction cost estimates were developed for projects for which concept plans and renderings were developed. Itemized construction costs are included in Appendix E.

#### 5.1 NEAR-TERM PROGRAM

The near-term program includes two projects that could be implemented within a three-year timeline. A summary of the project including lead agency and approximate construction cost is provided below.

| Project 1 – Traffic Signal Improvements – Route<br>156 (Main Street)                               | Mid-term |
|----------------------------------------------------------------------------------------------------|----------|
| Summary: Traffic signal improvements at the intersection of Route 161 and Route 156 (Main Street). | 0 5      |

This project includes:

Installing a new traffic signal at the Route 161 and Route 156 (Main Street) intersection. The
existing traffic signal is scheduled to be replaced under State Project #0172-0501 during the 2024
and 2025 construction seasonsRetroreflective backplates will be installed to enhance visibility and
mitigate rear end collisions. Accessible pedestrian signals to improve accessibility for visually
impaired pedestrians.

| Project 2 – Pavement Marking and Signing<br>Improvements – by the Town of East Lyme                             | Near-term |
|-----------------------------------------------------------------------------------------------------------------|-----------|
| Summary: Various pavement marking and signing improvements implemented and maintained by the Town of East Lyme. | J J       |

This project includes:

- Striping crosswalks across side streets with high pedestrian volumes including Grand Street, Hope Street, State Street, and Lincoln Street to enhance pedestrian safety.
- Striping on-street parking spaces on Hope Street to better accommodate parking demand from visitors to local businesses.
- Installing speed feedback signs between Roxbury Road and Society Road to discourage speeding.

#### Town of East Lyme

The approximate cost assumes that pavement markings will be installed in conjunction with routine pavement rehabilitation. Milling, paving, and related costs are therefore not included.

#### 5.2 MID-TERM PROGRAM

The mid-term program includes seven projects that could be implemented within a three to seven-year timeline. A summary of each project including lead agency and approximate construction cost is provided below.

| Project 3 – Bus Facility and Pocket Parking<br>Improvements                                                                                                 | Mid-Term                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| Summary: Modify existing curb geometry to accommodate bus pull outs and pocket parking. Install bus shelters and pedestrian refuge island between shelters. | Lead Agency: Town of East Lyme/CTDOT<br>Cost: \$700,000 |

This project includes:

- Constructing a pocket parking area on the west of the corridor, just south of Hope Street to accommodate bike lanes and improve sight distance.
- Installing a bus shelter northeast of Chapman Wood Road.
- Installing bus pull outs on both sides of the corridor just south of U.S. Route 1 (Boston Post Road) where buses can pick up and drop off passengers without impeding the flow of traffic.

Constructing a raised median island on the southern leg of the Route 161/U.S. Route 1 (Boston Post Road) intersection to enhance pedestrian safety between the proposed bus shelters and restriping the northbound approach to include an exclusive left turn lane and shared through/right turn lane.

| Project 4 – Pavement Marking and Signing<br>Improvements – by CTDOT                             | Mid-term |
|-------------------------------------------------------------------------------------------------|----------|
| Summary: Various pavement marking and signing improvements implemented and maintained by CTDOT. | 8 5      |

This project includes:

- Striping bike lanes along both sides of Route 161 between Route 156 (Main Street) and East Pattagansett Road to promote bicycle use and enhance safety for bicyclists.
- Restriping the existing shoulder between Roxbury Road and Society Road with 6"- wide shoulder markings to mitigate crashes involving pedestrians, bicyclists, and older drivers and to discourage speeding.



- Installing a crosswalk across Route 161 at Oak Hill Drive to improve access to the proposed sidewalk and overlook area at Gorton Pond.
- Restriping the roadway between Laurel Hill Drive and Industrial Park Road to incorporate a twoway left turn lane to improve traffic flow and reduce crashes.
- Installing an intersection warning sign on the northbound approach to Laurel Hill Drive to alert drivers to the presence of an intersection with limited sight distances and improve safety.
- Implementing a left-turn lane on the northbound approach to East Lyme High School to mitigate delay and enhance safety during the morning arrival period.

The proposed pocket parking area south of Hope Street identified as part of Project 2 should be constructed prior to restriping to accommodate installation of the bike lanes.

The approximate cost assumes that pavement markings will be installed in conjunction with routine pavement rehabilitation. Milling, paving, and related costs are therefore not included.

| Project 5 – Traffic Signal Improvements – East<br>Pattagansett Road to Society Road                 | Mid-term |
|-----------------------------------------------------------------------------------------------------|----------|
| Summary: Various upgrades to traffic signals<br>between East Pattagansett Road and Society<br>Road. |          |

This project includes:

- Installing new traffic signals at the Route 161/East Pattagansett Road and Route 161/Roxbury Road intersections. Provide separate traffic signal controllers at each intersection allowing each signal to operate independently, improving traffic operations, and reducing delay. Incorporate Leading Pedestrian Interval (LPI) phasing and accessible pedestrian signals at each intersection to enhance pedestrian safety and improve mobility for all users. At the Roxbury Road signal install a dedicated northbound left turn lane and a bicycle box to facilitate transition from the bicycle lanes south of the intersection to the shared use path north of the intersection.
- At the intersection of Route 161 and Society Road install accessible pedestrian signals, implement leading pedestrian interval (LPI) pedestrian phasing, and stripe a crosswalk across Society Road to improve pedestrian safety and mobility for all users.

| Project 6 – Traffic Signal Improvements –<br>Industrial Park Road to U.S. Route 1 (Boston Post<br>Road)              |  |
|----------------------------------------------------------------------------------------------------------------------|--|
| Summary: Various upgrades to traffic signals<br>between Industrial Park Road and U.S. Route 1<br>(Boston Post Road). |  |



This project includes:

- Install a crosswalk with pedestrian signals across Industrial Park Road and implement concurrent pedestrian phasing to improve pedestrian safety.
- Incorporate adaptive signal control at the new traffic signals to be installed at Industrial Park Road, the Exit 74 Off Ramp, King Arthur Drive, and Frontage Road under the I-95 Interchange 74 Improvement project.
- Install fiber optic interconnect to facilitate communication between the traffic signal at U.S. Route 1 (Boston Post Road) and the signals at Frontage Road, King Arthur Drive, the I-95 Exit 74 Off Ramp, and Industrial Park Road.
- Incorporate adaptive signal control at Route 161/U.S. Route 1 (Boston Post Road) traffic signal.

| Project 7 – Pedestrian Connectivity<br>Improvements                                                   | Mid-Term   |
|-------------------------------------------------------------------------------------------------------|------------|
| Summary: Provide new sidewalk facilities to improve connectivity and create a more walkable corridor. | <b>o y</b> |

This project includes:

- Constructing new sidewalk along the east side of Route 161 between Smith Street and Sleepy Hollow Road to create an improved pedestrian connection between Veterans Memorial Field, Oswegatchie Hills Nature Preserve, and the downtown Niantic area.
- Construct new sidewalk on the east side of the corridor in front of Latimer Brook Commons to fill a gap in the existing sidewalk network and improve pedestrian connectivity.

| Project 8 – Upgrade Existing Sidewalk Facilities                                                                                                                                                                                          | Mid-Term          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Summary: Install sidewalk ramps at locations<br>where they are missing, replace existing sidewalk<br>ramps with PROWAG-compliant ramps as<br>required, and widen narrow sidewalks to 5—feet.<br>Provide additional streetscape amenities. | Cost: \$1,600,000 |

This project includes:

- Construct pedestrian curb ramps where none are provided.
- Reconstruct pedestrian curb ramps and install detectable warning panels at various locations in accordance with the U.S. Access Board's Proposed Public Rights-of-Way Accessibility Guidelines.
- Widen the existing sidewalk along the west side of the corridor between Hope Street and East Pattagansett Road, along the east side of the corridor between Sleepy Hollow Road and Oak Hill Drive, and along the east side of the corridor between Laurel Hill Drive and Dunkin' Donuts.



Town of East Lyme

- Installing pedestrian scale lighting between Smith Street and Hope Street to enhance pedestrian visibility and walkability.
- Plant street trees within the public right-of-way to enhance the aesthetics of the downtown Niantic area and promote survival of local pollinators.

| Project 9 – Laurel Hill Drive Realignment                     | Mid-Term                                                |
|---------------------------------------------------------------|---------------------------------------------------------|
| Summary: Realign the Laurel Hill Drive approach to Route 161. | Lead Agency: Town of East Lyme/CTDOT<br>Cost: \$215,000 |

This project includes:

• Realigning the Laurel Hill Drive approach to Route 161 approximately 150 feet southward to reduce the skewed angle, improve sight distance, and mitigate crashes.

#### 5.3 LONG-TERM PROGRAM

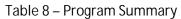
The long-term program includes one project that could take seven years or longer to implement. A summary of the project including lead agency and approximate construction cost is provided below.

| Project 10 – Shared Use Path – Roxbury Road to<br>East Lyme High School                                              | Long-term |
|----------------------------------------------------------------------------------------------------------------------|-----------|
| Summary: Install a shared use path along the west<br>side of Route 161 from Roxbury Road to East Lyme<br>High School | 5 5       |

This project includes:

• Installing a shared use path along the west side of Route 161 to promote nonmotorized modes of travel such as walking and biking. Construct retaining walls to support the shared use path along the south end of Gorton Pond. Provide an overlook area to accommodate fishing, sight-seeing, or other recreational activities. Extend the existing culvert south of Dunkin' to accommodate the shared use path.

#### 5.4 PROGRAM SUMMARY


Time frame, lead agency, approximate construction cost, study segments, right-of-way acquisitions, utility relocations, and permitting requirements for each of the projects are summarized in Table 8.



## Route 161 Corridor Study Town of East Lyme

Concept Plan

| Table 6 – Program Summary                                                         |               |             |                                     |                   |                    |                       |                                                                                                                                       |
|-----------------------------------------------------------------------------------|---------------|-------------|-------------------------------------|-------------------|--------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Project                                                                           | Time<br>Frame | Lead Agency | Approximate<br>Construction<br>Cost | Study<br>Segments | ROW<br>Acquisition | Utility<br>Relocation | Permits                                                                                                                               |
| 1 - Traffic Signal<br>Improvements - Route<br>156 (Main Street)                   | Near          | CTDOT       | \$320,000                           | 1                 | -                  | -                     | NDDB Habitat, Upland Review<br>Area, Coastal Management Area                                                                          |
| 2 - Pavement Marking<br>and Signing<br>Improvements - by the<br>Town of East Lyme | Near          | Town        | \$45,000                            | 1,3               | -                  | -                     | Wetlands and Watercourses,<br>Upland Review Area, NDDB<br>Habitat, Floodplain, Aquifer<br>Protection Area                             |
| 3 - Bus Facility and<br>Pocket Parking<br>Improvements                            | Mid           | Town/CTDOT  | \$700,000                           | 1,6               | -                  | -                     | Upland Review Area                                                                                                                    |
| 4 - Pavement Marking<br>and Signing<br>Improvements - by<br>CTDOT                 | Mid           | CTDOT       | \$75,000                            | 1,2,3,4,7         | -                  | -                     | Wetlands and Watercourses,<br>Upland Review Area, NDDB<br>Habitat, Floodplain, Aquifer<br>Protection Area, Coastal<br>Management Area |
| 5 - Traffic Signal<br>Improvements - East<br>Pattagansett Road to<br>Society Road | Mid           | CTDOT       | \$730,000                           | 3,4               | -                  | -                     | Wetlands and Watercourses,<br>Upland Review Area, NDDB,<br>Floodplain, Aquifer Protection Area                                        |
| 6 - Traffic Signal<br>Improvements -<br>Industrial Park Road to                   | Mid           | CTDOT       | \$300,000                           | 5,6,7             | -                  | -                     | Upland Review Area, Aquifer<br>Proteciton Area                                                                                        |





Route 161 Corridor Study Town of East Lyme

Concept Plan

| Project<br>U.S. Route 1 (Boston                                    | Time<br>Frame | Lead Agency | Approximate<br>Construction<br>Cost | Study<br>Segments | ROW<br>Acquisition | Utility<br>Relocation | Permits                                                                                                                       |
|--------------------------------------------------------------------|---------------|-------------|-------------------------------------|-------------------|--------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Post Road)                                                         |               |             |                                     |                   |                    |                       |                                                                                                                               |
| 7 - Pedestrian<br>Connectivity<br>Improvements                     | Mid           | Town/CTDOT  | \$900,000                           | 1,2,6             | ✓                  | ~                     | Wetlands and Watercourses,<br>Upland Review Area, NDDB Habitat                                                                |
| 8 - Upgrade Existing<br>Sidewalk Facilities                        | Mid           | Town/CTDOT  | \$1,600,000                         | 1,2,3,4           | -                  | -                     | Wetlands and Watercourses,<br>Upland Review, NDDB Habitat,<br>Floodplain, Aquifer Protection<br>Area, Coastal Management Area |
| 9 - Laurel Hill Drive<br>Realignment                               | Mid           | Town/CTDOT  | \$215,000                           | 4                 | ~                  | ~                     | Wetlands and Watercourses,<br>Upland Review, Aquifer Protection<br>Area                                                       |
| 10 - Shared Use Path -<br>Roxbury Road to East<br>Lyme High School | Long          | Town/CTDOT  | \$5,400,000                         | 3,4,5,6,7         | ~                  | ~                     | Wetlands and Watercourses,<br>Upland Review, NDDB Habitat,<br>Floodplain, Aquifer Protection Area                             |



#### **5.5 FUNDING OPPORTUNITIES**

The following funding programs have been identified as potential sources for financing the projects:

- Community Connectivity Grant Program The Community Connectivity Program seeks to improve accommodations for bicyclists and pedestrians in urban, suburban, and rural community centers. The goal of the Community Connectivity Program is to make conditions safer and more accommodating for pedestrians and bicyclists, thereby encouraging more people to use these healthy and environmentally sustainable modes of travel.
- Congestion Mitigation and Air Quality (CMAQ) Program The Congestion Mitigation and Air Quality Improvement (CMAQ) program provides a funding source for State and local governments to fund transportation projects and programs to help meet the requirements of the Clean Air Act (CAA) and its amendments.
- Congressionally Directed Spending/Community Project Funding Members of Congress may request funding for specific projects. These requests are reviewed by the Appropriations subcommittee and approved requests are included in the Consolidated Appropriations Act and the accompanying joint explanatory statement. These requests are called Congressionally Directed Spending in the Senate and Community Project Funding in the House of Representatives.
- Connecticut Recreational Trails Program The Connecticut Department of Environmental Protection's Recreational Trails Grant Program was established to provide funding to any private nonprofit organizations, municipalities, state departments, and tribal governments in support of trail projects.
- Local Capital Improvement Program (LoCIP) LoCIP distributes formula-based entitlement funds to municipalities to reimburse the cost of eligible local capital improvement projects such as road, bridge or public building construction activities.
- Local Transportation Capital Improvement Program(LOTCIP) The purpose of the LOTCIP is to
  provide State monies to urbanized area municipal governments in lieu of Federal funds otherwise
  available through the Federal transportation legislation. The LOTCIP allows eligible municipalities
  to perform capital infrastructure improvements with less burdensome requirements and
  minimizes the number and level of State resources involved in the oversight of municipal
  infrastructure improvements.
- Safe Streets and Roads for All Grant The Safe Streets and Roads for All (SS4A) Grant issued by USDOT funds planning, infrastructure, behavioral, and operational initiatives to eliminate fatalities and serious injury on roads and streets involving all roadway users, including pedestrians; bicyclists; public transportation, personal conveyance, and micromobility users; motorists; and commercial vehicle operators.
- Small Town Economic Assistance Program (STEAP) STEAP funds economic development, community conservation and quality-of-life capital projects for localities that are ineligible to receive Urban Action bonds. This program is managed by the Office of Policy and Management, and the grants are administered by various state agencies.



 Surface Transportation Program (STP) – The STP provides flexible funding that may be used by States and localities for projects to preserve and improve the conditions and performance on any Federal-aid highway, bridge and tunnel projects on any public road, pedestrian and bicycle infrastructure, and transit capital projects, including intercity bus terminals.

Many funding programs require local participation – typically 10% to 20% of the overall construction cost. The Town's capital improvement program may also be used to finance projects approved during the annual budget approval process. Additional pedestrian and bicycle funding opportunities for which the proposed projects may be eligible are summarized in Appendix F.



#### 6.0 Access Management

Multimodal conflicts and safety issues are present when closely spaced driveways and continuous access result in vehicular turning movements interfering with through movements for people driving, walking, and biking. Access management is a tool cities and towns can use to reduce conflicts using strategies like closing driveways, consolidating driveways, and modifying traffic patterns within a site. Access management strategies are most often associated with high density residential, commercial, or institutional driveways with a higher volume of turning movements.

An Access Management Plan was developed to assist the Town as they work with property owners to make modifications and incorporate improvements during future redevelopment. A more detailed description of each strategy considered for the Route 161 Corridor Study is described below.

- *Access Closure*: When one development has multiple driveways, there is an opportunity to close redundant driveways.
- *Relocate Access:* When driveways are closed, the access to the site can be relocated and realigned to an existing driveway or a new entrance and exit location.
- Create shared driveway: When multiple businesses have driveways placed close to one another, creating a shared driveway can channel all vehicle turning movements for the businesses into a single driveway.



- *Provide vehicular interconnection*: When multiple driveways are combined into one single driveway, access between the businesses may need to be added between the sites through access roadways.
- *Define Entrance*: Often, commercial driveways are built wider than necessary or do not have defined entrances and exits. In these situations, vehicles pull in and pull out in an unstructured manner, increasing conflict. Defining the driveway refers to the narrowing and channeling of

vehicles at driveways with overly wide or undefined entrances and exits. The narrowing of driveways also reduces pedestrian exposure to vehicles in the sidewalk.

- Continue sidewalk access across driveways: When sidewalks continue across driveways, drivers are alerted to the presence of pedestrians.
- Create one-way driveways: Creating oneway driveways restricts exiting or exiting





from certain driveways by dedicating certain driveways for entering and other driveways for exiting. This reduces the number of turning conflicts out of a site.

• *Maximize sight lines:* When through moving and turning vehicles cannot easily see one another, there is a greater opportunity for collisions. Maximizing sight lines can include moving access to a site to a location with better sight lines, cutting vegetation or removing or relocating obstructions.

The access management plan for the Route 161 Corridor focuses on closing, relocating or consolidating driveways along the parts of the corridor with closely spaced, frequent, and sometimes redundant driveways. The majority of the recommendations focus on the sections of roadway between East Lyme High School and Laurel Hill Drive, and between East Lyme Town Hall and Route 156, as these areas have the most frequent driveways and turning conflicts. Figures 20 through 28 show the proposed access management improvements along the corridor. Additional approvals may be required for strategies impacting privately owned roadways such as Chapman Woods Road.





- Maximize Sight Lines
   Access Closure
   Continue Sidewalk Across Driveway
   Create Shared Driveway
- Provide Vehicular Interconnection
   Redefine Entrance; Define Entrance
- Relocated Access
- One Way

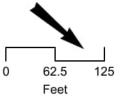
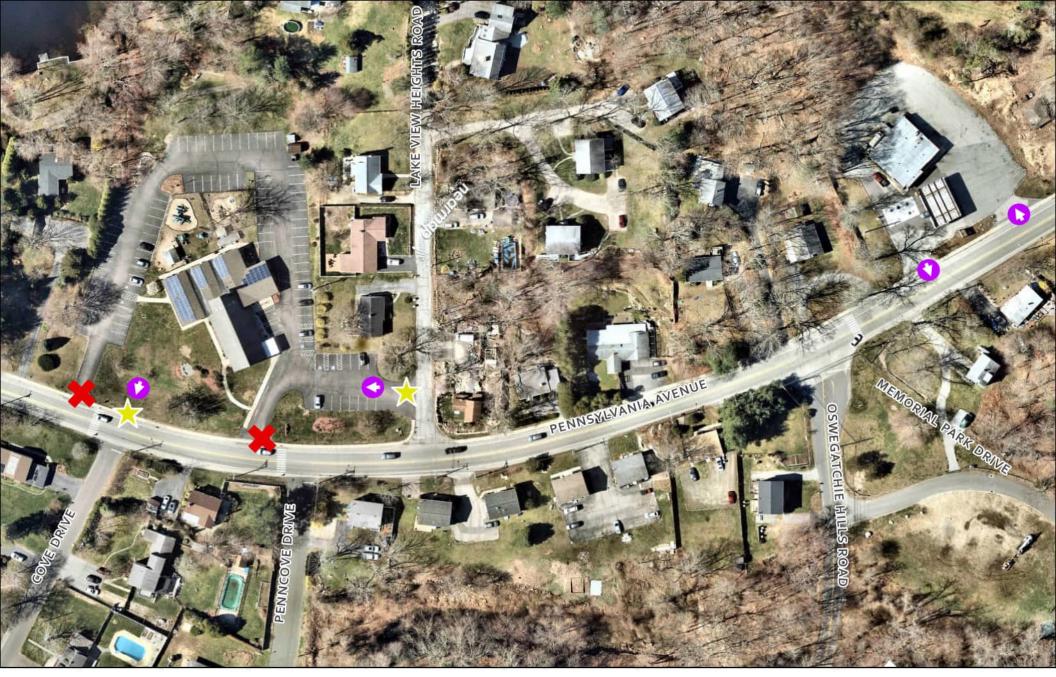




Figure 20 Access Management Plan Downtown Niantic

Date: June 15, 2023 Basemap: Nearmap Imagery and Interchange 74 Plans



- Maximize Sight Lines
   Access Closure
   Continue Sidewalk Across Driveway
   Create Shared Driveway
- Provide Vehicular Interconnection
   Redefine Entrance; Define Entrance
- Relocated Access
- One Way



Figure 21 Access Management Plan Near Oswegatchie Hills Road

Date: June 15, 2023 Basemap: Nearmap Imagery and Interchange 74 Plans



- Maximize Sight Lines
   Access Closure
   Continue Sidewalk Across Driveway
   Create Shared Driveway
- Provide Vehicular Interconnection
   Redefine Entrance; Define Entrance
- Relocated Access
- One Way

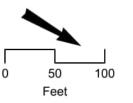
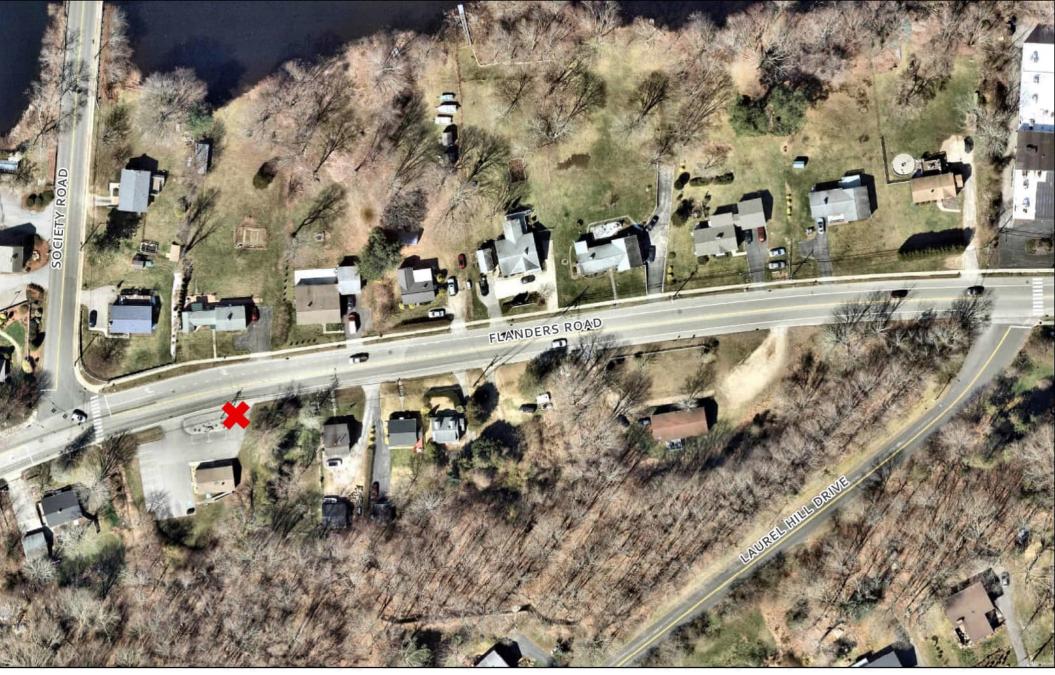
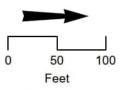




Figure 22 Access Management Plan Near East Patagansett Road

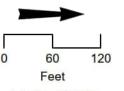

Date: June 15, 2023 Basemap: Nearmap Imagery and Interchange 74 Plans



Maximize Sight Lines
 Access Closure
 Continue Sidewalk Across Driveway
 Create Shared Driveway



- ★ Relocated Access
- One Way




Date: June 15, 2023 Basemap: Nearmap Imagery and Interchange 74 Plans

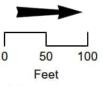
#### Figure 23 Access Management Plan Society Road to Laurel Hill Drive



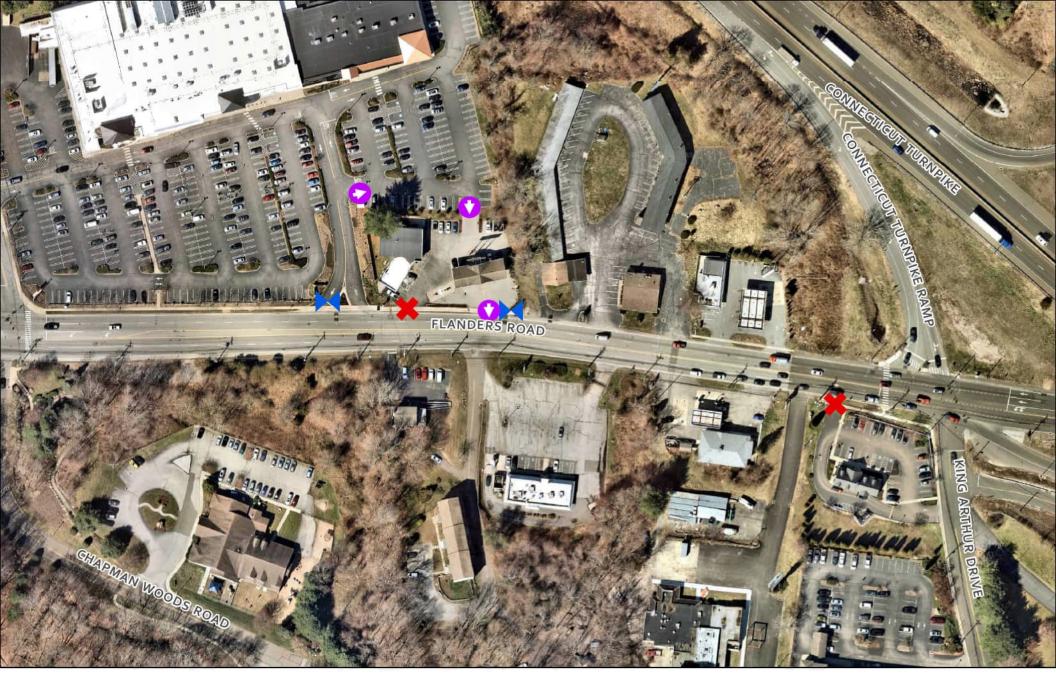
- Maximize Sight Lines
   Access Closure
   Continue Sidewalk Across Driveway
   Create Shared Driveway
- Provide Vehicular Interconnection
   Redefine Entrance; Define Entrance
- ★ Relocated Access
- One Way



Date: June 15, 2023 Basemap: Nearmap Imagery and Interchange 74 Plans Figure 24 Access Management Plan Laurel Hill Drive to Damon Heights Road




Maximize Sight Lines
 Access Closure
 Continue Sidewalk Across Driveway
 Create Shared Driveway

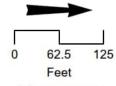



★ Relocated Access

One Way



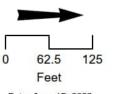
Date: June 15, 2023 Basemap: Nearmap Imagery and Interchange 74 Plans Figure 25 Access Management Plan Damon Heights Road to Industrial Park Road




Maximize Sight Lines
 Access Closure
 Continue Sidewalk Across Driveway
 Create Shared Driveway

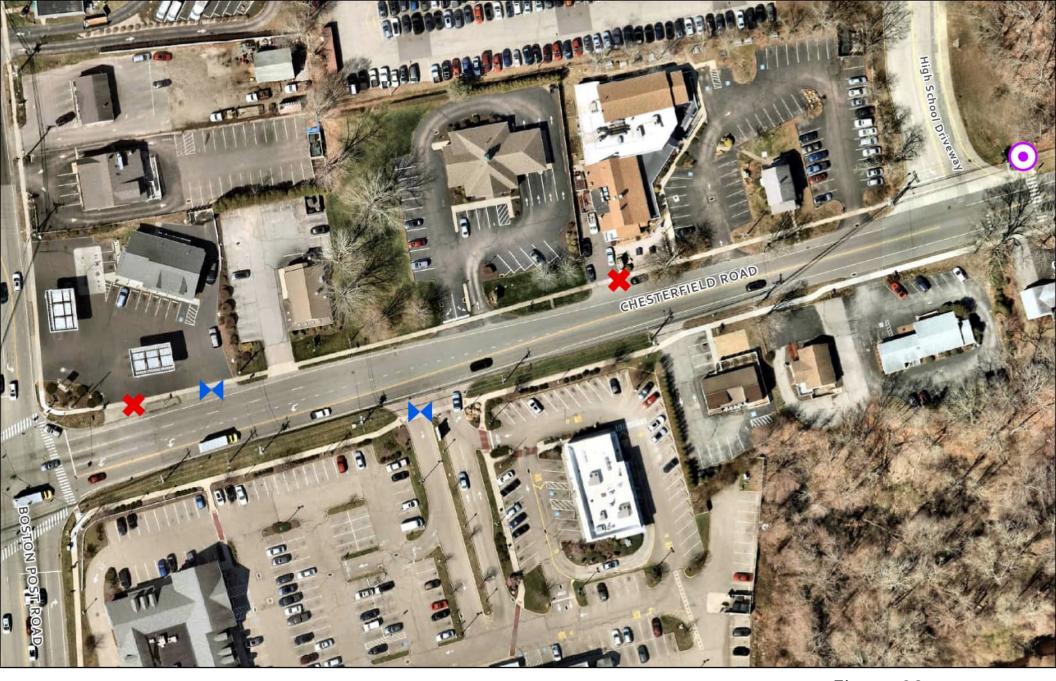






0



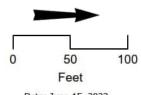
Date: June 15, 2023 Basemap: Nearmap Imagery and Interchange 74 Plans Figure 26 Access Management Plan Industrial Park Road to King Arthur Drive




- $\odot$ Maximize Sight Lines Access Closure Continue Sidewalk Across Driveway Create Shared Driveway
- Provide Vehicular Interconnection **(** Redefine Entrance; Define Entrance **Relocated Access**  $\star$
- 0
  - One Way



Date: June 15, 2023 Basemap: Nearmap Imagery and Interchange 74 Plans


Figure 27 **Access Management Plan** Frontage Road to U.S. Route 1 (Boston Post Road)



- Maximize Sight Lines
   Access Closure
   Continue Sidewalk Across Driveway
   Create Shared Driveway
- Provide Vehicular Interconnection
   Redefine Entrance; Define Entrance
   Relocated Access

One Way

0



Date: June 15, 2023 Basemap: Nearmap Imagery and Interchange 74 Plans

# Figure 28 Access Management Plan

U.S. Route 1 (Boston Post Road) to East Lyme High School Driveway

## APPENDIX A MEETING MINUTES & PUBLIC COMMENTS



## **RECORD OF MEETING**

| Client:           | SCCOG                            | Date:        | Tuesday, November 1, 2022 |
|-------------------|----------------------------------|--------------|---------------------------|
| Meeting Date:     | Thursday, October 27, 2022       | Prepared By: | Katey Curran              |
| Meeting Location: | East Lyme High School Auditorium | Job Number:  | 10369                     |
| Meeting Topic:    | Route 161 Corridor Study         |              |                           |

#### ATTENDEES:

See attached sign in sheet.

#### **RECORD OF MEETING MINUTES:**

- I. Introduction from the Southeastern Connecticut Council of Government's (SCCOG's) Senior Advisor, Jim Butler
  - A. SCCOG received a grant from the Connecticut Department of Transportation (CTDOT) last year. This grant was used to hire BETA Group Inc. (BETA) to perform the Route 161 Corridor Study.
- II. Introduction from East Lyme's First Selectman, Kevin Seery
  - A. For the past several months the Town, SCCOG, CTDOT, transit providers, and BETA have had bimonthly virtual meetings to discuss the corridor study.
- III. PowerPoint presentation
  - A. Joe Rimiller, BETA's Project Manager, gave a presentation that included a project introduction, discussion of previous studies and upcoming projects, existing and future corridor conditions, and next steps. A recording of the presentation has been posted on the project website (www.route161corridorstudy.com).
- IV. Break Out Sessions
  - A. Following the presentation attendees were asked to a series of stations and discuss three topics with BETA's engineers and planners. These topics, spin-off questions from BETA, and responses provided by the community are summarized below.
  - B. What is working well on the Route 161 corridor?
    - 1. What destinations do you like to visit?
      - a. Downtown
      - b. Village Café (190 Flanders Road)
    - 2. What streetscape or landscape features do you like?
      - a. Streetlights
    - 3. What is your overall vision for the corridor?
      - a. A roundabout at the Oswegatchie Hills Road intersection.
      - b. A roundabout at the East Pattagansett Road intersection.
  - C. What challenges or opportunities would you like to see addressed from the perspective of a pedestrian, bicyclist, or transit user?
    - 1. Are there areas where sidewalks are needed?
      - a. East Pattagansett Road needs a sidewalk.

Record of Meeting (Continued) Route 161 Corridor Study October 27, 2022 Page 2 of 3

- b. Extend sidewalk on the east side of Route 161 between Penncove Road and Route 156 to better serve the residents of these streets.
- c. Sidewalks are needed near Gorton Pond
- d. Sidewalks are needed on the east side of the corridor in Niantic
- e. Better walkability is needed
- 2. Are there areas where you have difficulty crossing the roadway?
  - a. Rectangular Rapid Flashing Beacons (RRFBs) are needed in the Downtown Niantic section.
  - b. The Industrial Park Road/Chapman Woods Road intersection needs a pedestrian signal head.
- 3. Are there areas where bicycle facilities are needed?
  - a. Realign/restripe Boston Post Road for better bike access.
  - b. Bike lanes are needed throughout the corridor.
  - c. Bike lanes should be considered in the four-lane section of the corridor between the high school and the Ford dealership.
- 4. Are there any improvements you would like to see made to transit services?
  - a. Improvements are needed at the bus stop at Stop & Shop (248 Flanders Road)
- D. What challenges or opportunities would you like to see addressed from the perspective of a driver?
  - 1. Are there areas where safety is a concern?
    - a. Drivers exiting the driveway for the liquor store at the Industrial Park Road/Chapman Woods Road intersection don't have a traffic signal and drivers aren't sure when to go.
    - b. Consider jughandles to eliminate challenging left turn.
    - c. Drivers turning right out of Citgo at 200 Flanders Road don't look for oncoming traffic. Consider eliminating or improving a driveway.
    - d. Drivers exiting the Stop and Shop driveway onto Route 161 ignore the right turn only designation. Consider installing bollards to prevent unsafe left turns.
    - e. The southbound left turn lane from Route 161 onto Chapman Woods Road does not provide sufficient storage for queued vehicles.
    - f. There are two traffic signals on the Society Road approach to Rt 161. Are they both needed?
    - g. An exclusive left turn lane with protected traffic signal phasing is needed at the northbound left turn from Route 161 onto the Frontage Road to the I-95 ramps. Drivers currently make unexpected left turns. There is also too much delay for this movement.
  - 2. Are there areas where vehicular congestion frustrates you?
    - a. The number of lanes on I-395/I-95 SB heading towards U.S. Route 1 drops from three to one. It is confusing for motorists and congested.
    - b. When there is congestion or an issue on I-95 drivers use U.S. Route 1. They tend to be more aggressive due to frustration and more prone to cause crashes. More police enforcement would help. The upcoming improvements at the I-95 Exit 74 Interchange may also help.



Record of Meeting (Continued) Route 161 Corridor Study October 27, 2022 Page 3 of 3

- c. During the summer I-95 is more congested so drivers use U.S. Route 1 instead and there is excessive backup near the Route 161 intersection. Left turn storage lanes fill up and left turning traffic obstructs through lanes.
- d. The traffic signals at the East Pattagansett Road and Roxbury Road intersections aren't always responsive to drivers.
- e. It is difficult to turn out of Oak Hill Drive due to congestion and speeding.
- f. Better traffic signal coordination is needed along the corridor.
- 3. Are there areas where you have difficulty parking?
  - a. Parking is challenging at Sift Bake Shop on Route 156 (185 Main Street).
- 4. Are there any destinations that you have difficulty accessing?
  - a. It is a challenge making left turns out of businesses on the west side of the corridor between Industrial Park Road and Society Road.
  - b. It is difficult to make a left turn out of the Citgo Station at 200 Flanders Road.
  - c. A traffic signal needed is needed at the Laurel Hill Drive/Gateway Plaza intersection.
  - d. It is difficult to make an eastbound left turn from Hope Street onto Route 161 due to heavy volumes and limited gaps in traffic.
  - e. Trying to get in or out of driveways at Flanders Commons is difficult, especially when making a left turn. It is hard to find a gap in traffic on Route 161 or Route 1.
  - f. There are long delays for drivers trying to make a left turn from Clarks Lane onto Route 161. There is a 55+ community on Clarks Lane.
  - g. The signals on the Frontage Road near Costco are closely spaced but this will be addressed by the I-95 Interchange 74 project.
- E. General comments
  - Better stormwater management is needed to prevent salt used to treat roads from getting into aquifers and ground water. This includes storm drains and tree filtration systems.
  - Native plants are needed to help pollinators.
  - More open space is needed for large trees to help with carbon reduction.







### **RECORD OF MEETING**

| Client:           | SCCOG                            | Date:        | Friday, April 28, 2023 |
|-------------------|----------------------------------|--------------|------------------------|
| Meeting Date:     | Thursday, April 27, 2023         | Prepared By: | Joe Rimiller           |
| Meeting Location: | East Lyme High School Auditorium | Job Number:  | 10369                  |
| Meeting Topic:    | Route 161 Corridor Study         |              |                        |

#### RECORD OF MEETING MINUTES:

- I. Introductions
  - A. Jim Butler from the Southeastern Connecticut Council of Governments (SCCOG) and First Selectman Kevin Seery introduced the project and thanked attendees for participating in the study.
- II. PowerPoint presentation
  - A. Joe Rimiller, BETA's Project Manager, gave a presentation that included a project introduction, recap of the existing & future conditions assessment, summary of stakeholder input, overview of the draft alternative recommendations, review of access management strategies, and discussion of the next steps in the study process. A recording of the presentation and draft recommendations have been posted on the project website (www.route161corridorstudy.com).
- III. Public Input
  - A. The following comments were provided by members of the community during the Q&A period following the presentation and in more intimate conversations that occurred at the various exhibits that were displayed:
    - Consider rerouting bicyclists down Hope Street since conflicts could occur with adjacent vehicles parked to the south of Hope Street.
    - Bicyclists should be encouraged to stay on Route 161 in the downtown area as that is where many of the businesses and amenities that they would like to visit are located.
    - Additional traffic calming measures beyond the proposed speed radar signs should be considered in the area between Roxbury Road and Society Road. Speeds are excessive.
    - Consider modified fog lines between Roxbury Road and Society Road.
    - Although a roundabout at the East Pattagansett Road intersection may help reduce speeds and improve intersection safety, residents in this area already have difficulty pulling out of their driveways. They rely on the traffic signal to create gaps in oncoming traffic that allow them to enter Route 161. There may be an increase in accidents downstream of the intersection if a roundabout is implemented and gaps are harder to come by.
    - The alternative bike route that was suggested along Roxbury Road, Riverview Road, and Society Road includes challenging terrain. Most bicyclists will have too much difficulty using this route and continue down Route 161 instead.

Record of Meeting (Continued) Route 161 Corridor Study April 27, 2023 Page 2 of 2

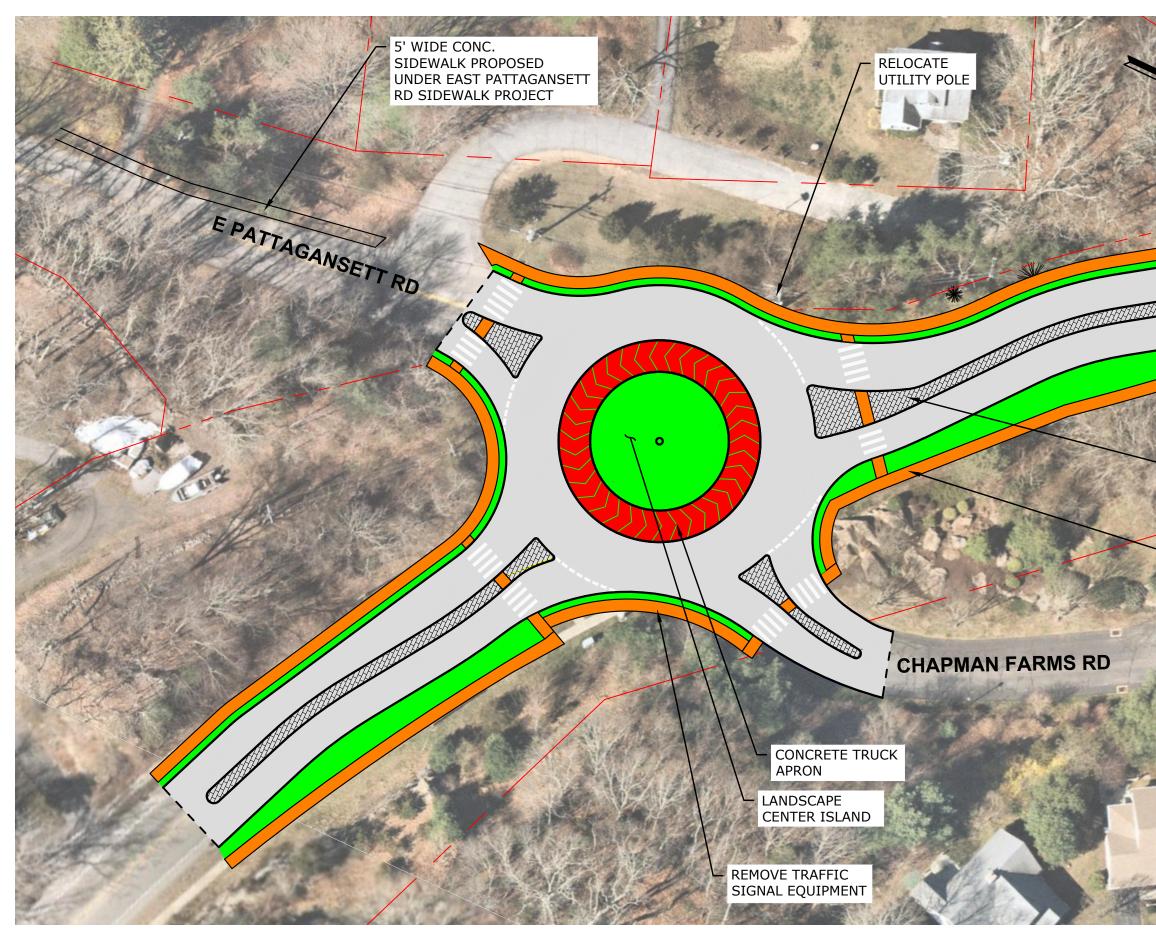
- Some bicyclists may not be comfortable using bike lanes or a shared use path due to high volumes and speeds.
- Reconsider relocating the Cartier Optical driveway from Route 161 to Chapman Woods Road. Chapman Woods Road is a private roadway which may make such a relocation impractical.
- Mr. Seery indicated that the town would be responsible for snow removal at new sidewalks and paths installed along Route 161.
- Consider widening the roadway if necessary.
- Cross traffic between Citizen's Bank and Hope Street can be hazardous.
- Better pedestrian accommodations are needed along Route 156. Residents would like to walk to the beach but streets along the Route 156 corridor lack sidewalks, are narrow, and don't have shoulders.
- Consider making East Pattagansett Road one-way southbound and adding a bicycle lane. This would simplify operations at the Route 161, Bush Hill Drive, and Hope Street intersections.
- Construction costs for improvements involving pavement marking restriping may be higher than estimated if the improvement is not implemented as part of a VIP program. If this is the case, milling and paving will also be required.
- Consider a wider sidewalk or bike facility along Gorton Pond. Can an 8' path be accommodated? Consider providing handrails on both sides and widening to at least 6'.

#### IV. Voting

- A. Residents were asked to vote for a preferred alternative at four locations where multiple alternatives were under consideration. The following votes were received:
  - 1. Route 161 at East Pattagansett Road intersection
    - a. Roundabout 5 votes
    - b. Traffic Signal Replacement 17 votes
  - 2. South end of Gorton Pond
    - a. Concrete Sidewalk 19 votes
    - b. Timber Boardwalk 0 votes
  - 3. Society Road to Industrial Park Road
    - a. Shared Use Path 8 votes
    - b. Buffered Bike Lanes 5 votes
  - 4. Boston Post Road to East Lyme High School
    - a. Shared Use Path 5 votes
    - b. Buffered Bike Lanes 2 votes



| Location                                           | Comment                                                                                                                                                                                                 |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| General                                            | Roundabouts are needed at corridor intersections.                                                                                                                                                       |
| General                                            | Turning left out of businesses on the east side of Route 161 is difficult.                                                                                                                              |
| General                                            | Add Sidewalk on 'resident' side of road.                                                                                                                                                                |
| General                                            | Extend the lamp post lighting that exists downtown further up to Oswegatchie to increase safe walking/transit at night and extend 'downtown access feel'.                                               |
| General                                            | I would like to see street trees being added.                                                                                                                                                           |
| General                                            | The corridor needs to have a walkable route (on one side or the other) running<br>all the way from ELHS to Route 156/Main Street. This includes the area along<br>Gorton Pond.                          |
| General                                            | Bury the utility lines, eliminating down poles / wires during severe weather events.                                                                                                                    |
| General                                            | Too much road salt in the winter by the State, the Town & private contractors while a good portion of Rt 161 is in an aquifer / wet lands.                                                              |
| General                                            | Provide bus service between East Lyme High School and Main Street                                                                                                                                       |
| General                                            | The proposed senior housing development may increase traffic volumes and noise levels                                                                                                                   |
| Downtown Niantic                                   | Many of these business have dedicated entry/exit points and increases turning/traffic concerns.                                                                                                         |
| Hope Street Intersection                           | Turning left from Hope Street to Penn Avenue is difficult with the liquor store<br>parking lot, crosswalk, bank exits, and oncoming traffic. Parked vehicles in<br>front of Grace obstruct sight lines. |
| State Road Intersection                            | Utilize this area as the main entry/egress from the Town Hall to take turning traffic off of main drag and terminate it at a stop sign.                                                                 |
| State Road Intersection                            | Turning from this intersection is a bit blind to the north due to the trees.                                                                                                                            |
| Jo Anne Street                                     | Jo Anne St is the only side street in downtown Niantic that does not have a cross walk.                                                                                                                 |
| Lake View Heights                                  | It is difficult to cross Route 161 near Lake View Heights as a pedestrian because drivers rarely yield.                                                                                                 |
| Lake View Heights                                  | It is difficult to make a left turn out of Lake View Heights due to the curve in the roadway and speeding. Many Lake View Residents use the church parking lot to make the left turn.                   |
| Niantic Community Church<br>(170 Pennsylvania Ave) | Consider removal of this entry/exit point on main road to filter traffic to Lakeview (at stop sign) and increase distance from traffic turning at that intersection                                     |


| Oswegatchie Hills Road<br>Intersection | Consider use of Roundabout in this location to break-up the speeding that occurs from both directions.                                                                                                                   |  |  |  |  |  |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Oswegatchie Hills Road<br>Intersection | Install a pedestrian activated RRFB to improve safety at this crossing.                                                                                                                                                  |  |  |  |  |  |
| Sunoco (188 Pennsylvania<br>Avenue)    | Turning out of the Sunoco Lot is a blind turn. Increased visibility needed for<br>oncoming traffic.                                                                                                                      |  |  |  |  |  |
| Sleepy Hollow Road                     | Install a pedestrian activated RRFB to provide a higher level of safety for residents and visitors to cross the street in this location.                                                                                 |  |  |  |  |  |
| East Pattagansett Road                 | Consider use of roundabout in this location.                                                                                                                                                                             |  |  |  |  |  |
| East Pattagansett Road<br>Intersection | A roundabout is unnecessary at the intersectino of East Pattagansett Road.<br>Residents relay on the traffic signal to provide gaps allowing them to turn from<br>driveways.                                             |  |  |  |  |  |
| Roxbury Road Intersection              | The traffic going north before the Roxbury Road light almost always stays in the left lane. This triggers the signal for the southbound light to turn red, even though the northbound traffic doesn't want to turn left. |  |  |  |  |  |
| Roxbury Road Intersection              | We need a left turn lane for northbound cars turning into Roxbury Road.                                                                                                                                                  |  |  |  |  |  |
| Society Road to Roxbury                | Sidewalks are needed near Gorton Pond.                                                                                                                                                                                   |  |  |  |  |  |
| Society Road to Roxbury                | Scare to ride a bike here. Need bike path to Society Road                                                                                                                                                                |  |  |  |  |  |
| Gorton Pond                            | Piles of tree limbs are blocking pedestrian access along Gorton Pond.                                                                                                                                                    |  |  |  |  |  |
| Gorton Pond                            | There is a lack of parking available for visitors to Gorton Pond.                                                                                                                                                        |  |  |  |  |  |
| Gorton Pond                            | Consider widening the proposed boardwalk near Gorton Pond to better<br>accommodate bicyclists. A crosswalk at Oak Hill Drive would improve access to<br>the boardwalk.                                                   |  |  |  |  |  |
| Oak Hill Drive Intersection            | There needs to be a light at Roxbury Raod that halts traffic to allow left and right turns from Oak Hill Dirve.                                                                                                          |  |  |  |  |  |
| Oak Hill Drive Intersection            | It is difficult exiting from Oak Hill Drive due to the timing of the traffic signal at Roxbury Road and East Pattagansett Road.                                                                                          |  |  |  |  |  |
| Oak Hill Drive Intersection            | It is difficult to exit from Oak Hill Drive due to timing patterns of the lights at<br>Roxbury and East Pattagansett.                                                                                                    |  |  |  |  |  |
| Society Road Intersection              | Difficulty crossing by foot.                                                                                                                                                                                             |  |  |  |  |  |
| Society Road to Oak Hill Dr            | Would love to have the sidewalk extended along the length of Flanders Road here.                                                                                                                                         |  |  |  |  |  |
| Citgo (200 Flanders Road)              | Turning out of CITGO is difficult due to traffic in both directions.                                                                                                                                                     |  |  |  |  |  |
| Stop & Shop (248 Flanders              | Many drivers turn left despite road design.                                                                                                                                                                              |  |  |  |  |  |
| Industrial Park<br>Road/Chapman Woods  | A pedestrian signal head and button are needed on the north side of the intersection.                                                                                                                                    |  |  |  |  |  |
| Chapman Woods Road                     | Chapman Woods Road is privately owned and relocating the Cartier Optical access from Route 161 Road would require resident approval.                                                                                     |  |  |  |  |  |

| Chapman Woods Road<br>Intersection | Residents of Chapman Woods Road may be reluctant to use the proposed bus<br>shelter near the intersection due to Chapman Woods Road being on a steep<br>hill. Sight lines for vehicles making right turns out of Chapman Woods Road<br>should be taken into consideration if a bus shelter is added. |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Boston Post Road                   | Drivers turning south onto Route 161 are the cause for much congenstion in                                                                                                                                                                                                                           |
| Intersection                       | this area.                                                                                                                                                                                                                                                                                           |
| East Lyme High School              | Put a stop light in at the high school to assist with left turns and help backup                                                                                                                                                                                                                     |
| Intersection                       | trying to get into ELHS.                                                                                                                                                                                                                                                                             |
| East Lyme High School              | Area optimal for roundabout.                                                                                                                                                                                                                                                                         |

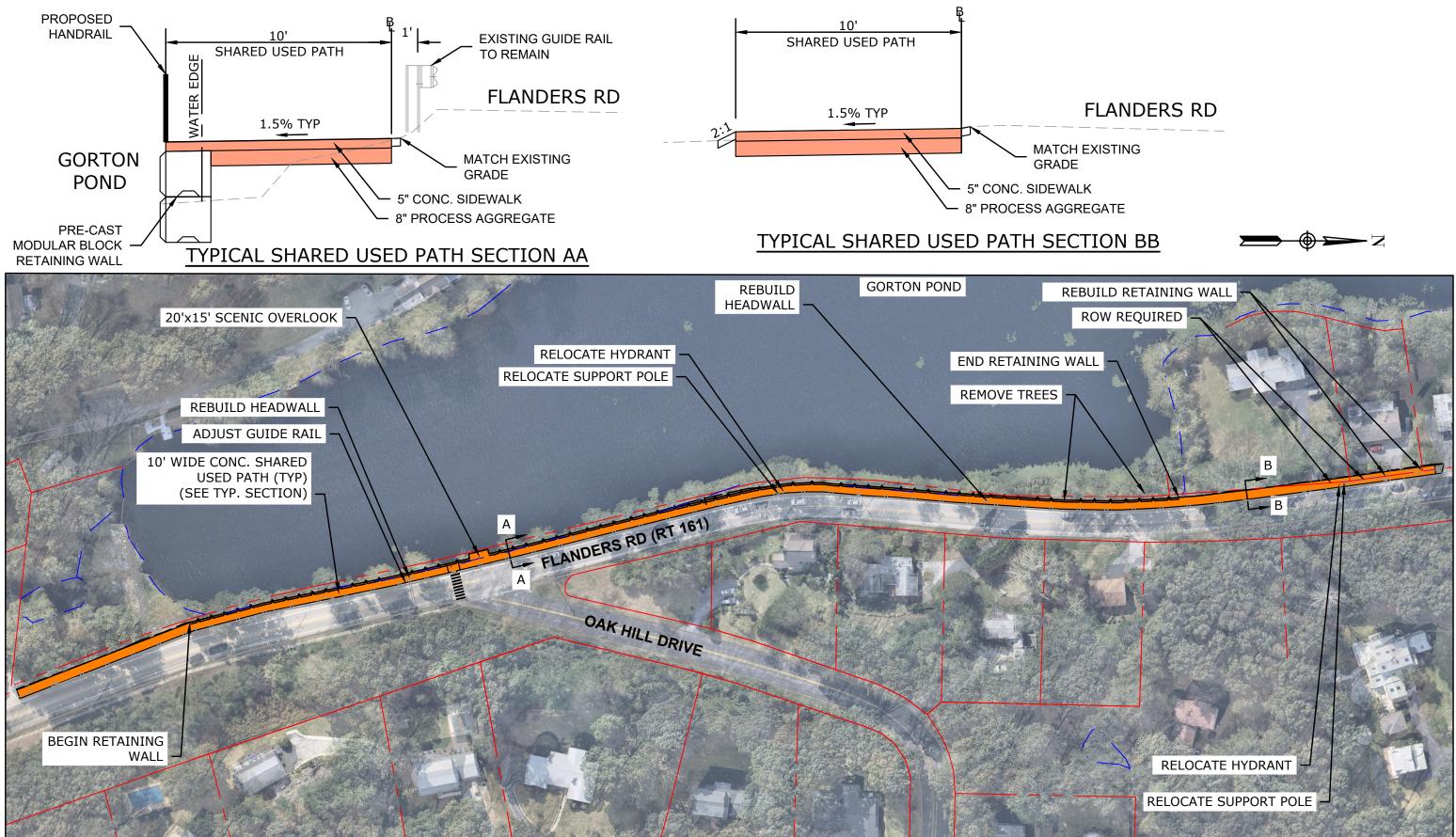
## APPENDIX B CONCEPT PLANS



BIKE LANES AND POCKET PARKING ROUTE 161 - ROUTE 156 (MAIN STREET) TO HOPE STREET SCALE: 1"=50'

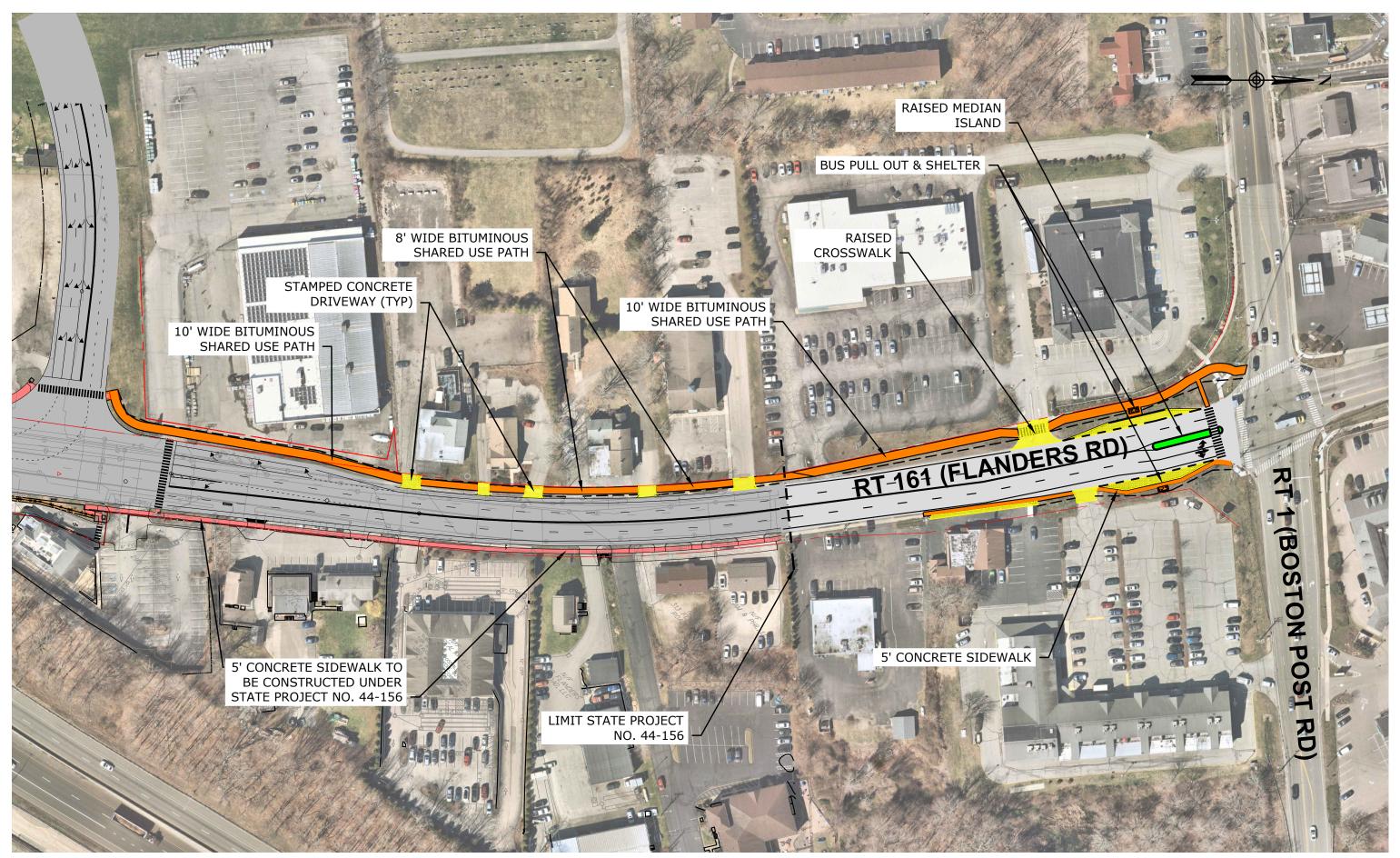


SPLINTER ISLAND STAMPED CONCRETE (TYP)


PENNSYLVANIA AVE (RT 161)

5' WIDE CONC. SIDEWALK (TYP)

# 


East Pattagansett Road Roundabout





SHARED USE PATH AND **RETAINING WALLS ROUTE 161 AT GORTON POND** SCALE: 1"=100'





SHARED USE PATH, BUS SHETLERS, AND PEDESTRIAN REFUGE ISLAND ROUTE 161 - FRONTAGE ROAD TO U.S. ROUTE 1 (BOSTON POST ROAD) SCALE: 1"=100'

## APPENDIX C CAPACITY ANALYSIS REPORTS

|                                       | ≯            | +            | +                                            | •            | 1            | 1                |         |   |  |
|---------------------------------------|--------------|--------------|----------------------------------------------|--------------|--------------|------------------|---------|---|--|
| Movement                              | EBL          | EBT          | WBT                                          | WBR          | SBL          | SBR              |         |   |  |
| Lane Configurations                   | <u> </u>     | <u> </u>     | <u> </u>                                     | 1            | Y            | 301              |         |   |  |
| Traffic Volume (vph)                  | 170          | 280          | 410                                          | 230          | 220          | 190              |         |   |  |
| Future Volume (vph)                   | 170          | 280          | 410                                          | 230          | 220          | 190              |         |   |  |
| deal Flow (vphpl)                     | 1900         | 1900         | 1900                                         | 1900         | 1900         | 1900             |         |   |  |
| Lane Width                            | 1900         | 1900         | 1900                                         | 1900         | 1900         | 13               |         |   |  |
| Fotal Lost time (s)                   | 4.0          | 5.8          | 5.8                                          | 5.8          | 4.0          | 15               |         |   |  |
| ane Util. Factor                      | 4.0          | 5.8<br>1.00  | 1.00                                         | 5.6<br>1.00  | 4.0          |                  |         |   |  |
| Frpb, ped/bikes                       | 1.00         | 1.00         | 1.00                                         | 0.93         | 0.96         |                  |         |   |  |
|                                       |              |              |                                              |              |              |                  |         |   |  |
| Flpb, ped/bikes<br>Frt                | 1.00<br>1.00 | 1.00<br>1.00 | 1.00<br>1.00                                 | 1.00<br>0.85 | 1.00<br>0.94 |                  |         |   |  |
|                                       |              |              |                                              |              |              |                  |         |   |  |
| Flt Protected                         | 0.95         | 1.00         | 1.00                                         | 1.00         | 0.97         |                  |         |   |  |
| Satd. Flow (prot)                     | 1724         | 1881         | 1818                                         | 1444         | 1728         |                  |         |   |  |
| Flt Permitted                         | 0.19         | 1.00         | 1.00                                         | 1.00         | 0.97         |                  |         |   |  |
| Satd. Flow (perm)                     | 347          | 1881         | 1818                                         | 1444         | 1728         |                  |         |   |  |
| Peak-hour factor, PHF                 | 0.92         | 0.92         | 0.80                                         | 0.80         | 0.91         | 0.91             |         |   |  |
| Adj. Flow (vph)                       | 185          | 304          | 512                                          | 288          | 242          | 209              |         |   |  |
| RTOR Reduction (vph)                  | 0            | 0            | 0                                            | 166          | 32           | 0                |         |   |  |
| Lane Group Flow (vph)                 | 185          | 304          | 513                                          | 122          | 419          | 0                |         |   |  |
| Confl. Peds. (#/hr)                   | 31           |              |                                              | 31           | 31           | 31               |         |   |  |
| Heavy Vehicles (%)                    | 1%           | 1%           | 1%                                           | 1%           | 0%           | 0%               |         |   |  |
| Furn Type                             | pm+pt        | NA           | NA                                           | Perm         | Prot         |                  |         |   |  |
| Protected Phases                      | 1            | 2            | 2                                            |              | 4            |                  |         |   |  |
| Permitted Phases                      | 2            |              |                                              | 2            |              |                  |         |   |  |
| Actuated Green, G (s)                 | 32.4         | 27.2         | 27.2                                         | 27.2         | 21.7         |                  |         |   |  |
| Effective Green, g (s)                | 32.4         | 27.2         | 27.2                                         | 27.2         | 21.7         |                  |         |   |  |
| Actuated g/C Ratio                    | 0.39         | 0.33         | 0.33                                         | 0.33         | 0.26         |                  |         |   |  |
| Clearance Time (s)                    | 4.0          | 5.8          | 5.8                                          | 5.8          | 4.0          |                  |         |   |  |
| Vehicle Extension (s)                 | 1.5          | 2.5          | 2.5                                          | 2.5          | 1.5          |                  |         |   |  |
| Lane Grp Cap (vph)                    | 223          | 620          | 599                                          | 476          | 454          |                  |         |   |  |
| //s Ratio Prot                        | c0.05        | 0.16         | c0.28                                        |              | c0.24        |                  |         |   |  |
| v/s Ratio Perm                        | 0.27         |              |                                              | 0.08         |              |                  |         |   |  |
| v/c Ratio                             | 0.83         | 0.49         | 0.86                                         | 0.26         | 0.92         |                  |         |   |  |
| Uniform Delay, d1                     | 20.8         | 22.1         | 25.8                                         | 20.3         | 29.6         |                  |         |   |  |
| Progression Factor                    | 1.00         | 1.00         | 1.00                                         | 1.00         | 1.00         |                  |         |   |  |
| Incremental Delay, d2                 | 20.9         | 0.4          | 11.4                                         | 0.2          | 23.9         |                  |         |   |  |
| Delay (s)                             | 41.7         | 22.6         | 37.3                                         | 20.5         | 53.4         |                  |         |   |  |
| _evel of Service                      | D            | С            | D                                            | C            | D            |                  |         |   |  |
| Approach Delay (s)                    | -            | 29.8         | 31.2                                         | Ŭ            | 53.4         |                  |         |   |  |
| Approach LOS                          |              | 27.0<br>C    | C                                            |              | D            |                  |         |   |  |
| ntersection Summary                   |              |              |                                              |              |              |                  |         |   |  |
| HCM 2000 Control Delay                |              |              | 36.6                                         |              | CM 2000      | Level of Service |         | D |  |
| 5                                     | acity ratio  |              | 30.0<br>0.74                                 | П            |              |                  |         | U |  |
| 1 2                                   |              | 0.74<br>82.5 |                                              |              |              | 17               | 7.8     |   |  |
| tersection Capacity Utilization 67.6% |              |              | Sum of lost time (s)<br>ICU Level of Service |              |              | 17               | .8<br>С |   |  |
| Analysis Period (min)                 | zaliun       |              | 07.0%<br>15                                  | IC IC        | O Level (    | UI SEIVICE       |         | C |  |
| c Critical Lane Group                 |              |              | 10                                           |              |              |                  |         |   |  |
| c childar Lane Group                  |              |              |                                              |              |              |                  |         |   |  |

### Queues 37: Rt 156 (Main St) & Route 161

|                         | ٦    | <b>→</b> | +    | •    | 1    |
|-------------------------|------|----------|------|------|------|
| Lane Group              | EBL  | EBT      | WBT  | WBR  | SBL  |
| Lane Group Flow (vph)   | 185  | 304      | 513  | 288  | 451  |
| v/c Ratio               | 0.80 | 0.48     | 0.84 | 0.45 | 0.92 |
| Control Delay           | 46.7 | 26.8     | 41.9 | 7.8  | 55.8 |
| Queue Delay             | 0.0  | 0.0      | 0.0  | 0.0  | 0.0  |
| Total Delay             | 46.7 | 26.8     | 41.9 | 7.8  | 55.8 |
| Queue Length 50th (ft)  | 68   | 146      | 287  | 17   | ~270 |
| Queue Length 95th (ft)  | #175 | 227      | #389 | 54   | #460 |
| Internal Link Dist (ft) |      | 576      | 456  |      | 584  |
| Turn Bay Length (ft)    | 170  |          |      | 170  |      |
| Base Capacity (vph)     | 232  | 675      | 653  | 675  | 492  |
| Starvation Cap Reductn  | 0    | 0        | 0    | 0    | 0    |
| Spillback Cap Reductn   | 0    | 0        | 0    | 0    | 0    |
| Storage Cap Reductn     | 0    | 0        | 0    | 0    | 0    |
| Reduced v/c Ratio       | 0.80 | 0.45     | 0.79 | 0.43 | 0.92 |
| Intersection Summary    |      |          |      |      |      |

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles. 95th percentile volume exceeds capacity, queue may be longer. # Queue shown is maximum after two cycles.

|                                         | ≯          | $\mathbf{r}$ | •     | †    | Ļ          | 4          |
|-----------------------------------------|------------|--------------|-------|------|------------|------------|
| Movement                                | EBL        | EBR          | NBL   | NBT  | SBT        | SBR        |
| Lane Configurations                     | Υ          |              |       | र्च  | eî.        |            |
| Traffic Volume (veh/h)                  | 60         | 60           | 50    | 370  | 370        | 80         |
| Future Volume (Veh/h)                   | 60         | 60           | 50    | 370  | 370        | 80         |
| Sign Control                            | Stop       |              |       | Free | Free       |            |
| Grade                                   | 0%         |              |       | 0%   | 0%         |            |
| Peak Hour Factor                        | 0.87       | 0.87         | 0.84  | 0.84 | 0.91       | 0.91       |
| Hourly flow rate (vph)                  | 69         | 69           | 60    | 440  | 407        | 88         |
| Pedestrians                             | 19         |              |       | 19   | 19         |            |
| Lane Width (ft)                         | 14.0       |              |       | 16.0 | 16.0       |            |
| Walking Speed (ft/s)                    | 3.5        |              |       | 3.5  | 3.5        |            |
| Percent Blockage                        | 2          |              |       | 2    | 2          |            |
| Right turn flare (veh)                  |            |              |       |      |            |            |
| Median type                             |            |              |       | None | None       |            |
| Median storage veh)                     |            |              |       |      |            |            |
| Upstream signal (ft)                    |            |              |       | 664  |            |            |
| pX, platoon unblocked                   |            |              |       | 50.  |            |            |
| vC, conflicting volume                  | 1049       | 489          | 514   |      |            |            |
| vC1, stage 1 conf vol                   |            |              |       |      |            |            |
| vC2, stage 2 conf vol                   |            |              |       |      |            |            |
| vCu, unblocked vol                      | 1049       | 489          | 514   |      |            |            |
| tC, single (s)                          | 6.4        | 6.2          | 4.1   |      |            |            |
| tC, 2 stage (s)                         |            |              |       |      |            |            |
| tF (s)                                  | 3.5        | 3.3          | 2.2   |      |            |            |
| p0 queue free %                         | 70         | 88           | 94    |      |            |            |
| cM capacity (veh/h)                     | 229        | 557          | 1034  |      |            |            |
| Direction, Lane #                       | EB 1       | NB 1         | SB 1  |      |            |            |
| Volume Total                            | 138        | 500          | 495   |      |            |            |
| Volume Left                             | 69         | 60           | 475   |      |            |            |
| Volume Right                            | 69         | 00           | 88    |      |            |            |
| cSH                                     | 324        | 1034         | 1700  |      |            |            |
| Volume to Capacity                      | 0.43       | 0.06         | 0.29  |      |            |            |
| Queue Length 95th (ft)                  | 0.43<br>51 | 0.00         | 0.29  |      |            |            |
|                                         | 24.1       | 1.6          | 0.0   |      |            |            |
| Control Delay (s)                       | 24.1<br>C  | 1.0<br>A     | 0.0   |      |            |            |
| Lane LOS                                |            |              | 0.0   |      |            |            |
| Approach Delay (s)                      | 24.1<br>C  | 1.6          | 0.0   |      |            |            |
| Approach LOS                            | L          |              |       |      |            |            |
| Intersection Summary                    |            |              |       |      |            |            |
| Average Delay                           |            |              | 3.7   |      |            |            |
| Intersection Capacity Utiliza           | ation      |              | 67.4% | IC   | CU Level c | of Service |
| Analysis Period (min)                   |            |              | 15    |      |            |            |
| , j = = = = = = = = = = = = = = = = = = |            |              |       |      |            |            |

# HCM Unsignalized Intersection Capacity Analysis 30: Route 161 & State Rd/Lincoln St

|                              | ٠     | +    | *     | 4    | Ļ       | *          | ≺    | 1    | 1    | ŕ    | ţ    | ~    |
|------------------------------|-------|------|-------|------|---------|------------|------|------|------|------|------|------|
| Movement                     | EBL   | EBT  | EBR   | WBL  | WBT     | WBR        | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
| Lane Configurations          |       | 4    |       |      | - ↔     |            |      | - ↔  |      |      | 4    |      |
| Traffic Volume (veh/h)       | 20    | 0    | 10    | 10   | 0       | 10         | 0    | 410  | 10   | 10   | 450  | 10   |
| Future Volume (Veh/h)        | 20    | 0    | 10    | 10   | 0       | 10         | 0    | 410  | 10   | 10   | 450  | 10   |
| Sign Control                 |       | Stop |       |      | Stop    |            |      | Free |      |      | Free |      |
| Grade                        |       | 0%   |       |      | 0%      |            |      | 0%   |      |      | 0%   |      |
| Peak Hour Factor             | 0.78  | 0.78 | 0.78  | 0.75 | 0.75    | 0.75       | 0.91 | 0.91 | 0.91 | 0.88 | 0.88 | 0.88 |
| Hourly flow rate (vph)       | 26    | 0    | 13    | 13   | 0       | 13         | 0    | 451  | 11   | 11   | 511  | 11   |
| Pedestrians                  |       | 19   |       |      | 19      |            |      | 19   |      |      | 19   |      |
| Lane Width (ft)              |       | 12.0 |       |      | 12.0    |            |      | 12.0 |      |      | 12.0 |      |
| Walking Speed (ft/s)         |       | 3.5  |       |      | 3.5     |            |      | 3.5  |      |      | 3.5  |      |
| Percent Blockage             |       | 2    |       |      | 2       |            |      | 2    |      |      | 2    |      |
| Right turn flare (veh)       |       |      |       |      |         |            |      |      |      |      |      |      |
| Median type                  |       |      |       |      |         |            |      | None |      |      | None |      |
| Median storage veh)          |       |      |       |      |         |            |      |      |      |      |      |      |
| Upstream signal (ft)         |       |      |       |      |         |            |      |      |      |      |      |      |
| pX, platoon unblocked        |       |      |       |      |         |            |      |      |      |      |      |      |
| vC, conflicting volume       | 1046  | 1038 | 554   | 1046 | 1038    | 494        | 541  |      |      | 481  |      |      |
| vC1, stage 1 conf vol        |       |      |       |      |         |            |      |      |      |      |      |      |
| vC2, stage 2 conf vol        |       |      |       |      |         |            |      |      |      |      |      |      |
| vCu, unblocked vol           | 1046  | 1038 | 554   | 1046 | 1038    | 494        | 541  |      |      | 481  |      |      |
| tC, single (s)               | 7.1   | 6.5  | 6.2   | 7.1  | 6.5     | 6.2        | 4.1  |      |      | 4.1  |      |      |
| tC, 2 stage (s)              |       |      |       |      |         |            |      |      |      |      |      |      |
| tF (s)                       | 3.5   | 4.0  | 3.3   | 3.5  | 4.0     | 3.3        | 2.2  |      |      | 2.2  |      |      |
| p0 queue free %              | 86    | 100  | 97    | 93   | 100     | 98         | 100  |      |      | 99   |      |      |
| cM capacity (veh/h)          | 189   | 222  | 516   | 187  | 220     | 554        | 1014 |      |      | 1067 |      |      |
| Direction, Lane #            | EB 1  | WB 1 | NB 1  | SB 1 |         |            |      |      |      |      |      |      |
| Volume Total                 | 39    | 26   | 462   | 533  |         |            |      |      |      |      |      |      |
| Volume Left                  | 26    | 13   | 0     | 11   |         |            |      |      |      |      |      |      |
| Volume Right                 | 13    | 13   | 11    | 11   |         |            |      |      |      |      |      |      |
| cSH                          | 240   | 280  | 1014  | 1067 |         |            |      |      |      |      |      |      |
| Volume to Capacity           | 0.16  | 0.09 | 0.00  | 0.01 |         |            |      |      |      |      |      |      |
| Queue Length 95th (ft)       | 14    | 8    | 0     | 1    |         |            |      |      |      |      |      |      |
| Control Delay (s)            | 22.9  | 19.2 | 0.0   | 0.3  |         |            |      |      |      |      |      |      |
| Lane LOS                     | С     | С    |       | А    |         |            |      |      |      |      |      |      |
| Approach Delay (s)           | 22.9  | 19.2 | 0.0   | 0.3  |         |            |      |      |      |      |      |      |
| Approach LOS                 | С     | С    |       |      |         |            |      |      |      |      |      |      |
| Intersection Summary         |       |      |       |      |         |            |      |      |      |      |      |      |
| Average Delay                |       |      | 1.5   |      |         |            |      |      |      |      |      |      |
| Intersection Capacity Utiliz | ation |      | 47.1% | IC   | U Level | of Service |      |      | А    |      |      |      |
| Analysis Period (min)        |       |      | 15    |      |         |            |      |      |      |      |      |      |

|                              | ٦      | -    | +     | •    | 1        |            |
|------------------------------|--------|------|-------|------|----------|------------|
| Movement                     | EBL    | EBT  | WBT   | WBR  | SBL      | SBR        |
| Lane Configurations          |        | र्स  | 4Î    |      | Y        |            |
| Traffic Volume (veh/h)       | 60     | 440  | 450   | 50   | 40       | 70         |
| Future Volume (Veh/h)        | 60     | 440  | 450   | 50   | 40       | 70         |
| Sign Control                 |        | Free | Free  |      | Stop     |            |
| Grade                        |        | 0%   | 0%    |      | 0%       |            |
| Peak Hour Factor             | 0.86   | 0.86 | 0.90  | 0.90 | 0.83     | 0.83       |
| Hourly flow rate (vph)       | 70     | 512  | 500   | 56   | 48       | 84         |
| Pedestrians                  |        | 6    | 6     |      | 6        |            |
| Lane Width (ft)              |        | 11.0 | 11.0  |      | 11.0     |            |
| Walking Speed (ft/s)         |        | 3.5  | 3.5   |      | 3.5      |            |
| Percent Blockage             |        | 1    | 1     |      | 1        |            |
| Right turn flare (veh)       |        |      |       |      |          |            |
| Median type                  |        | None | None  |      |          |            |
| Median storage veh)          |        |      |       |      |          |            |
| Upstream signal (ft)         |        |      |       |      |          |            |
| pX, platoon unblocked        |        |      |       |      |          |            |
| vC, conflicting volume       | 562    |      |       |      | 1192     | 540        |
| vC1, stage 1 conf vol        |        |      |       |      |          |            |
| vC2, stage 2 conf vol        |        |      |       |      |          |            |
| vCu, unblocked vol           | 562    |      |       |      | 1192     | 540        |
| tC, single (s)               | 4.1    |      |       |      | 6.4      | 6.2        |
| tC, 2 stage (s)              |        |      |       |      |          |            |
| tF (s)                       | 2.2    |      |       |      | 3.5      | 3.3        |
| p0 queue free %              | 93     |      |       |      | 75       | 84         |
| cM capacity (veh/h)          | 1009   |      |       |      | 192      | 540        |
| Direction, Lane #            | EB 1   | WB 1 | SB 1  |      |          |            |
| Volume Total                 | 582    | 556  | 132   |      |          |            |
| Volume Left                  | 70     | 0    | 48    |      |          |            |
| Volume Right                 | 0      | 56   | 84    |      |          |            |
| cSH                          | 1009   | 1700 | 326   |      |          |            |
| Volume to Capacity           | 0.07   | 0.33 | 0.41  |      |          |            |
| Queue Length 95th (ft)       | 6      | 0    | 47    |      |          |            |
| Control Delay (s)            | 1.8    | 0.0  | 23.4  |      |          |            |
| Lane LOS                     | A      |      | С     |      |          |            |
| Approach Delay (s)           | 1.8    | 0.0  | 23.4  |      |          |            |
| Approach LOS                 |        |      | С     |      |          |            |
| Intersection Summary         |        |      |       |      |          |            |
| Average Delay                |        |      | 3.3   |      |          |            |
| Intersection Capacity Utiliz | zation |      | 71.3% | IC   | Ulevelo  | of Service |
| Analysis Period (min)        |        |      | 15    | 10   | 5 201010 |            |
|                              |        |      | 15    |      |          |            |

|                                | ۶        | -    | +     | ×    | 1    |            |
|--------------------------------|----------|------|-------|------|------|------------|
| Movement                       | EBL      | EBT  | WBT   | WBR  | SBL  | SBR        |
| Lane Configurations            |          | র্ন  | ¢Î    |      | - M  |            |
| Traffic Volume (veh/h)         | 20       | 470  | 480   | 20   | 20   | 10         |
| Future Volume (Veh/h)          | 20       | 470  | 480   | 20   | 20   | 10         |
| Sign Control                   |          | Free | Free  |      | Stop |            |
| Grade                          |          | 0%   | 0%    |      | 0%   |            |
| Peak Hour Factor               | 0.91     | 0.91 | 0.91  | 0.91 | 0.69 | 0.69       |
| Hourly flow rate (vph)         | 22       | 516  | 527   | 22   | 29   | 14         |
| Pedestrians                    |          | 4    | 4     |      | 4    |            |
| Lane Width (ft)                |          | 11.0 | 11.0  |      | 12.0 |            |
| Walking Speed (ft/s)           |          | 3.5  | 3.5   |      | 3.5  |            |
| Percent Blockage               |          | 0    | 0     |      | 0    |            |
| Right turn flare (veh)         |          |      |       |      |      |            |
| Median type                    |          | None | None  |      |      |            |
| Median storage veh)            |          |      |       |      |      |            |
| Upstream signal (ft)           |          | 853  |       |      |      |            |
| pX, platoon unblocked          |          |      |       |      | 0.79 |            |
| vC, conflicting volume         | 553      |      |       |      | 1106 | 546        |
| vC1, stage 1 conf vol          |          |      |       |      |      |            |
| vC2, stage 2 conf vol          |          |      |       |      |      |            |
| vCu, unblocked vol             | 553      |      |       |      | 1003 | 546        |
| tC, single (s)                 | 4.1      |      |       |      | 6.4  | 6.2        |
| tC, 2 stage (s)                |          |      |       |      |      |            |
| tF (s)                         | 2.2      |      |       |      | 3.5  | 3.3        |
| p0 queue free %                | 98       |      |       |      | 86   | 97         |
| cM capacity (veh/h)            | 1018     |      |       |      | 205  | 530        |
| Direction, Lane #              | EB 1     | WB 1 | SB 1  |      |      |            |
| Volume Total                   | 538      | 549  | 43    |      |      |            |
| Volume Left                    | 22       | 0    | 29    |      |      |            |
| Volume Right                   | 0        | 22   | 14    |      |      |            |
| cSH                            | 1018     | 1700 | 256   |      |      |            |
| Volume to Capacity             | 0.02     | 0.32 | 0.17  |      |      |            |
| Queue Length 95th (ft)         | 2        | 0.52 | 15    |      |      |            |
| Control Delay (s)              | 0.6      | 0.0  | 21.9  |      |      |            |
| Lane LOS                       | 0.0<br>A | 0.0  | C     |      |      |            |
| Approach Delay (s)             | 0.6      | 0.0  | 21.9  |      |      |            |
| Approach LOS                   | 0.0      | 0.0  | C     |      |      |            |
| Intersection Summary           |          |      |       |      |      |            |
| Average Delay                  |          |      | 1.1   |      |      |            |
| Intersection Capacity Utilizat | ion      |      | 52.2% | 10   |      | of Service |
|                                |          |      |       | iC   |      |            |
| Analysis Period (min)          |          |      | 15    |      |      |            |

| HCM Signalized Intersection Capacity Analysis      |
|----------------------------------------------------|
| 24: E Pattagansett Rd/Chapman Farms Rd & Route 161 |

06/01/2023

|                                 | ¥        | ×            | 2     | Ť      | ×         | ۲          | 3         | *     | ľ      | í,      | *    | ×    |
|---------------------------------|----------|--------------|-------|--------|-----------|------------|-----------|-------|--------|---------|------|------|
| Movement                        | SEL      | SET          | SER   | NWL    | NWT       | NWR        | NEL       | NET   | NER    | SWL     | SWT  | SWR  |
| Lane Configurations             |          | <del>ب</del> | 1     |        | र्स       |            |           | र्स   | 1      |         | \$   |      |
| Traffic Volume (vph)            | 10       | 450          | 350   | 20     | 470       | 10         | 290       | 10    | 30     | 10      | 10   | 10   |
| Future Volume (vph)             | 10       | 450          | 350   | 20     | 470       | 10         | 290       | 10    | 30     | 10      | 10   | 10   |
| Ideal Flow (vphpl)              | 1900     | 1900         | 1900  | 1900   | 1900      | 1900       | 1900      | 1900  | 1900   | 1900    | 1900 | 1900 |
| Lane Width                      | 13       | 13           | 13    | 12     | 12        | 12         | 12        | 12    | 12     | 16      | 16   | 16   |
| Grade (%)                       |          | 0%           |       |        | 0%        |            |           | 2%    |        |         | -4%  |      |
| Total Lost time (s)             |          | 6.1          | 6.1   |        | 6.1       |            |           | 4.0   | 4.0    |         | 4.0  |      |
| Lane Util. Factor               |          | 1.00         | 1.00  |        | 1.00      |            |           | 1.00  | 1.00   |         | 1.00 |      |
| Frpb, ped/bikes                 |          | 1.00         | 0.98  |        | 1.00      |            |           | 1.00  | 0.97   |         | 0.99 |      |
| Flpb, ped/bikes                 |          | 1.00         | 1.00  |        | 1.00      |            |           | 0.99  | 1.00   |         | 1.00 |      |
| Frt                             |          | 1.00         | 0.85  |        | 1.00      |            |           | 1.00  | 0.85   |         | 0.95 |      |
| Flt Protected                   |          | 1.00         | 1.00  |        | 1.00      |            |           | 0.95  | 1.00   |         | 0.98 |      |
| Satd. Flow (prot)               |          | 1942         | 1614  |        | 1871      |            |           | 1763  | 1538   |         | 2041 |      |
| Flt Permitted                   |          | 0.99         | 1.00  |        | 0.97      |            |           | 0.70  | 1.00   |         | 0.89 |      |
| Satd. Flow (perm)               |          | 1917         | 1614  |        | 1820      |            |           | 1302  | 1538   |         | 1854 |      |
| Peak-hour factor, PHF           | 0.90     | 0.90         | 0.90  | 0.95   | 0.95      | 0.95       | 0.92      | 0.92  | 0.92   | 0.75    | 0.75 | 0.75 |
| Adj. Flow (vph)                 | 11       | 500          | 389   | 21     | 495       | 11         | 315       | 11    | 33     | 13      | 13   | 13   |
| RTOR Reduction (vph)            | 0        | 0            | 101   | 0      | 1         | 0          | 0         | 0     | 20     | 0       | 8    | 0    |
| Lane Group Flow (vph)           | 0        | 511          | 288   | 0      | 526       | 0          | 0         | 326   | 13     | 0       | 31   | 0    |
| Confl. Peds. (#/hr)             | 3        | 0.11         | 3     | 3      | 010       | 3          | 3         | 020   | 3      | 3       | 01   | 3    |
| Heavy Vehicles (%)              | 1%       | 1%           | 1%    | 1%     | 1%        | 1%         | 1%        | 1%    | 1%     | 0%      | 0%   | 0%   |
| Turn Type                       | Perm     | NA           | Perm  | Perm   | NA        |            | Perm      | NA    | Perm   | Perm    | NA   | 0.10 |
| Protected Phases                | 1 OIIII  | 2            | 1 Onn | T OITH | 2         |            | i onn     | 5 6   | T OITH | 1 OIIII | 5 6  |      |
| Permitted Phases                | 2        | -            | 2     | 2      | -         |            | 56        | 00    | 56     | 56      | 00   |      |
| Actuated Green, G (s)           | -        | 27.9         | 27.9  | -      | 27.9      |            | 00        | 24.7  | 24.7   | 00      | 24.7 |      |
| Effective Green, g (s)          |          | 27.9         | 27.9  |        | 27.9      |            |           | 24.7  | 24.7   |         | 24.7 |      |
| Actuated g/C Ratio              |          | 0.44         | 0.44  |        | 0.44      |            |           | 0.39  | 0.39   |         | 0.39 |      |
| Clearance Time (s)              |          | 6.1          | 6.1   |        | 6.1       |            |           | 0.07  | 0.07   |         | 0.07 |      |
| Vehicle Extension (s)           |          | 3.0          | 3.0   |        | 3.0       |            |           |       |        |         |      |      |
| Lane Grp Cap (vph)              |          | 853          | 718   |        | 809       |            |           | 512   | 605    |         | 730  |      |
| v/s Ratio Prot                  |          | 000          | /10   |        | 007       |            |           | 512   | 005    |         | 750  |      |
| v/s Ratio Perm                  |          | 0.27         | 0.18  |        | c0.29     |            |           | c0.25 | 0.01   |         | 0.02 |      |
| v/c Ratio                       |          | 0.60         | 0.40  |        | 0.65      |            |           | 0.64  | 0.01   |         | 0.02 |      |
| Uniform Delay, d1               |          | 13.2         | 11.8  |        | 13.6      |            |           | 15.4  | 11.6   |         | 11.7 |      |
| Progression Factor              |          | 1.00         | 1.00  |        | 1.00      |            |           | 1.00  | 1.00   |         | 1.00 |      |
| Incremental Delay, d2           |          | 1.1          | 0.4   |        | 1.9       |            |           | 1.9   | 0.0    |         | 0.0  |      |
| Delay (s)                       |          | 14.3         | 12.1  |        | 15.5      |            |           | 17.3  | 11.6   |         | 11.7 |      |
| Level of Service                |          | B            | B     |        | В         |            |           | В     | B      |         | B    |      |
| Approach Delay (s)              |          | 13.4         | U     |        | 15.5      |            |           | 16.8  | U      |         | 11.7 |      |
| Approach LOS                    |          | B            |       |        | B         |            |           | B     |        |         | B    |      |
| Intersection Summary            |          |              |       |        |           |            |           |       |        |         |      |      |
| HCM 2000 Control Delay          |          |              | 14.6  | Н      | CM 2000   | Level of   | Service   |       | В      |         |      |      |
| HCM 2000 Volume to Capaci       | ty ratio |              | 0.70  |        | 2 2000    | 2010101    | 2 01 1100 |       | 2      |         |      |      |
| Actuated Cycle Length (s)       | .,       |              | 62.7  | S      | um of los | t time (s) |           |       | 14.1   |         |      |      |
| Intersection Capacity Utilizati | on       |              | 73.3% |        |           | of Service | ,         |       | D      |         |      |      |
| Analysis Period (min)           |          |              | 15    |        | 2 20101   |            | -         |       |        |         |      |      |
| c Critical Lane Group           |          |              | 10    |        |           |            |           |       |        |         |      |      |

|                         | $\mathbf{X}$ | 2    | ×    | ×    | ~    | *    |
|-------------------------|--------------|------|------|------|------|------|
| Lane Group              | SET          | SER  | NWT  | NET  | NER  | SWT  |
| Lane Group Flow (vph)   | 511          | 389  | 527  | 326  | 33   | 39   |
| v/c Ratio               | 0.60         | 0.48 | 0.65 | 0.64 | 0.05 | 0.05 |
| Control Delay           | 17.7         | 9.0  | 19.1 | 23.1 | 4.6  | 10.2 |
| Queue Delay             | 0.0          | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| Total Delay             | 17.7         | 9.0  | 19.1 | 23.1 | 4.6  | 10.2 |
| Queue Length 50th (ft)  | 126          | 43   | 133  | 88   | 0    | 5    |
| Queue Length 95th (ft)  | 286          | 135  | 306  | 219  | 14   | 21   |
| Internal Link Dist (ft) | 476          |      | 773  | 540  |      | 361  |
| Turn Bay Length (ft)    |              | 50   |      |      | 50   |      |
| Base Capacity (vph)     | 1219         | 1093 | 1158 | 723  | 872  | 1038 |
| Starvation Cap Reductn  | 0            | 0    | 0    | 0    | 0    | 0    |
| Spillback Cap Reductn   | 0            | 0    | 0    | 0    | 0    | 0    |
| Storage Cap Reductn     | 0            | 0    | 0    | 0    | 0    | 0    |
| Reduced v/c Ratio       | 0.42         | 0.36 | 0.46 | 0.45 | 0.04 | 0.04 |
| Intersection Summary    |              |      |      |      |      |      |

| Intersection                |       |       |       |       |       |       |
|-----------------------------|-------|-------|-------|-------|-------|-------|
| Intersection Delay, s/veh   | 18.9  |       |       |       |       |       |
| Intersection LOS            | С     |       |       |       |       |       |
| Approach                    |       | SE    | NW    | NE    |       | SW    |
| Entry Lanes                 |       | 1     | 1     | 1     |       | 1     |
| Conflicting Circle Lanes    |       | 1     | 1     | 1     |       | 1     |
| Adj Approach Flow, veh/h    |       | 900   | 527   | 359   |       | 39    |
| Demand Flow Rate, veh/h     |       | 909   | 532   | 362   |       | 39    |
| Vehicles Circulating, veh/h |       | 47    | 340   | 529   |       | 839   |
| Vehicles Exiting, veh/h     |       | 831   | 551   | 427   |       | 33    |
| Follow-Up Headway, s        | 3.    | .186  | 3.186 | 3.186 |       | 3.186 |
| Ped Vol Crossing Leg, #/h   |       | 3     | 3     | 3     |       | 3     |
| Ped Cap Adj                 |       | .000  | 1.000 | 1.000 |       | 1.000 |
| Approach Delay, s/veh       | :     | 22.6  | 16.2  | 14.5  |       | 8.4   |
| Approach LOS                |       | С     | С     | В     |       | А     |
| Lane                        | Left  | Left  |       | Left  | Left  |       |
| Designated Moves            | LTR   | LTR   |       | LTR   | LTR   |       |
| Assumed Moves               | LTR   | LTR   |       | LTR   | LTR   |       |
| RT Channelized              |       |       |       |       |       |       |
| Lane Util                   | 1.000 | 1.000 | 1     | 1.000 | 1.000 |       |
| Critical Headway, s         | 5.193 | 5.193 | 5     | 5.193 | 5.193 |       |
| Entry Flow, veh/h           | 909   | 532   |       | 362   | 39    |       |
| Cap Entry Lane, veh/h       | 1078  | 804   |       | 666   | 488   |       |
| Entry HV Adj Factor         | 0.990 | 0.991 | C     | ).991 | 1.000 |       |
| Flow Entry, veh/h           | 900   | 527   |       | 359   | 39    |       |
| Cap Entry, veh/h            | 1067  | 796   |       | 660   | 488   |       |
| V/C Ratio                   | 0.844 | 0.662 | (     | ).544 | 0.080 |       |
| Control Delay, s/veh        | 22.6  | 16.2  |       | 14.5  | 8.4   |       |
| LOS                         | С     | С     |       | В     | А     |       |
| 95th %tile Queue, veh       | 11    | 5     |       | 3     | 0     |       |

|                                                   | ٦           | $\mathbf{i}$ | •               | 1        | Ļ          | 1                |    |   |
|---------------------------------------------------|-------------|--------------|-----------------|----------|------------|------------------|----|---|
| Movement                                          | EBL         | EBR          | NBL             | NBT      | SBT        | SBR              |    |   |
| Lane Configurations                               | Ý           | LDIX         | <u>الله الم</u> |          | 1001<br>1  | 301              |    |   |
| Traffic Volume (vph)                              | 30          | 50           | 60              | 740      | 790        | 60               |    |   |
| Future Volume (vph)                               | 30          | 50           | 60              | 740      | 790        | 60               |    |   |
| Ideal Flow (vphpl)                                | 1900        | 1900         | 1900            | 1900     | 1900       | 1900             |    |   |
| Lane Width                                        | 1700        | 1700         | 1700            | 1700     | 1700       | 12               |    |   |
| Grade (%)                                         | 2%          |              |                 | 0%       | 0%         | 12               |    |   |
| Total Lost time (s)                               | 4.0         |              | 4.0             | 6.1      | 6.1        |                  |    |   |
| Lane Util. Factor                                 | 1.00        |              | 1.00            | 1.00     | 1.00       |                  |    |   |
| Frpb, ped/bikes                                   | 0.98        |              | 1.00            | 1.00     | 1.00       |                  |    |   |
| Flpb, ped/bikes                                   | 1.00        |              | 1.00            | 1.00     | 1.00       |                  |    |   |
| Frt                                               | 0.92        |              | 1.00            | 1.00     | 0.99       |                  |    |   |
| Flt Protected                                     | 0.98        |              | 0.95            | 1.00     | 1.00       |                  |    |   |
| Satd. Flow (prot)                                 | 1572        |              | 1728            | 1818     | 1860       |                  |    |   |
| Flt Permitted                                     | 0.98        |              | 0.09            | 1.00     | 1.00       |                  |    |   |
| Satd. Flow (perm)                                 | 1572        |              | 172             | 1818     | 1860       |                  |    |   |
| Peak-hour factor, PHF                             | 0.79        | 0.79         | 0.92            | 0.92     | 0.93       | 0.93             |    |   |
| Adj. Flow (vph)                                   | 38          | 63           | 65              | 804      | 849        | 65               |    |   |
| RTOR Reduction (vph)                              | 58          | 0            | 000             | 004      | 3          | 0                |    |   |
| Lane Group Flow (vph)                             | 43          | 0            | 65              | 804      | 911        | 0                |    |   |
| Confl. Peds. (#/hr)                               | 3           | 3            | 3               | 004      | 711        | 3                |    |   |
| Heavy Vehicles (%)                                | 2%          | 2%           | 1%              | 1%       | 1%         | 1%               |    |   |
| urn Type                                          | Prot        | 270          | D.P+P           | NA       | NA         | 170              |    |   |
| Protected Phases                                  | 5           |              | 6               | 2.6      | 2          |                  |    |   |
| Permitted Phases                                  | J           |              | 2               | 20       | 2          |                  |    |   |
| ctuated Green, G (s)                              | 6.0         |              | 57.6            | 61.6     | 42.3       |                  |    |   |
| Effective Green, g (s)                            | 6.0         |              | 57.6            | 57.6     | 42.3       |                  |    |   |
| ctuated g/C Ratio                                 | 0.08        |              | 0.74            | 0.74     | 0.54       |                  |    |   |
| Clearance Time (s)                                | 4.0         |              | 4.0             | 0.74     | 6.1        |                  |    |   |
| Vehicle Extension (s)                             | 1.5         |              | 1.5             |          | 3.0        |                  |    |   |
| Lane Grp Cap (vph)                                | 1.3         |              | 433             | 1347     | 1012       |                  |    |   |
| /s Ratio Prot                                     | c0.03       |              | 433<br>0.03     | c0.44    | c0.49      |                  |    |   |
| /s Ratio Perm                                     | 0.03        |              | 0.03            | 60.44    | CU.47      |                  |    |   |
| v/c Ratio                                         | 0.35        |              | 0.08            | 0.60     | 0.90       |                  |    |   |
| Uniform Delay, d1                                 | 34.0        |              | 9.4             | 4.7      | 15.8       |                  |    |   |
| Progression Factor                                | 1.00        |              | 9.4<br>1.00     | 1.00     | 1.00       |                  |    |   |
| Incremental Delay, d2                             | 0.7         |              | 0.1             | 0.7      | 10.9       |                  |    |   |
| Delay (s)                                         | 34.7        |              | 9.4             | 5.4      | 26.7       |                  |    |   |
| Level of Service                                  | C           |              | 7.4<br>A        | J.4      | 20.7<br>C  |                  |    |   |
| Approach Delay (s)                                | 34.7        |              | - A             | 5.7      | 26.7       |                  |    |   |
| Approach LOS                                      | C           |              |                 | 3.7<br>A | 20.7<br>C  |                  |    |   |
| ntersection Summary                               | U           |              |                 | Л        | U          |                  |    |   |
| HCM 2000 Control Delay                            |             |              | 17.4            | Ц        | CM 2000    | Level of Service |    | В |
| ICM 2000 Control Delay<br>ICM 2000 Volume to Capa | city ratio  |              | 0.78            | П        |            | Level of Service |    | ט |
| Actuated Cycle Length (s)                         | icity ratio |              | 0.78            | C.       | um of lost | timo (s)         | 14 | 1 |
| Intersection Capacity Utiliza                     | ation       |              | 63.7%           |          | CU Level c |                  | 14 | B |
| Analysis Period (min)                             |             |              | 03.7%<br>15     | iC       |            |                  |    | U |
| c Critical Lane Group                             |             |              | 15              |          |            |                  |    |   |

Future (2042) Build Weekday PM Peak

### Queues 22: Route 161 & Roxbury Rd

|                         | ٦    | •    | t    | Ļ    |
|-------------------------|------|------|------|------|
| Lane Group              | EBL  | NBL  | NBT  | SBT  |
| Lane Group Flow (vph)   | 101  | 65   | 804  | 914  |
| v/c Ratio               | 0.49 | 0.15 | 0.54 | 0.89 |
| Control Delay           | 24.3 | 2.8  | 5.1  | 32.1 |
| Queue Delay             | 0.0  | 0.0  | 0.5  | 0.0  |
| Total Delay             | 24.3 | 2.8  | 5.5  | 32.1 |
| Queue Length 50th (ft)  | 17   | 4    | 101  | 382  |
| Queue Length 95th (ft)  | 51   | 13   | 232  | #765 |
| Internal Link Dist (ft) | 1120 |      | 476  | 697  |
| Turn Bay Length (ft)    |      | 150  |      |      |
| Base Capacity (vph)     | 279  | 545  | 1473 | 1025 |
| Starvation Cap Reductn  | 0    | 0    | 274  | 0    |
| Spillback Cap Reductn   | 0    | 0    | 0    | 0    |
| Storage Cap Reductn     | 0    | 0    | 0    | 0    |
| Reduced v/c Ratio       | 0.36 | 0.12 | 0.67 | 0.89 |
| Intersection Summary    |      |      |      |      |

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

|                              | ٦           | $\mathbf{i}$ | 1     | t     | Ļ          | ∢              |     |   |
|------------------------------|-------------|--------------|-------|-------|------------|----------------|-----|---|
| Movement                     | EBL         | EBR          | NBL   | NBT   | SBT        | SBR            |     |   |
| Lane Configurations          | Y           | LDR          | 5     | 1     | <u> </u>   | 1              |     |   |
| Traffic Volume (vph)         | 130         | 100          | 100   | 640   | 740        | 140            |     |   |
| Future Volume (vph)          | 130         | 100          | 100   | 640   | 740        | 140            |     |   |
| Ideal Flow (vphpl)           | 1900        | 1900         | 1900  | 1900  | 1900       | 1900           |     |   |
| Lane Width                   | 11          | 11           | 11    | 11    | 14         | 14             |     |   |
| Grade (%)                    | 0%          |              |       | 0%    | 3%         |                |     |   |
| Total Lost time (s)          | 4.0         |              | 4.0   | 4.0   | 5.6        | 5.6            |     |   |
| Lane Util. Factor            | 1.00        |              | 1.00  | 1.00  | 1.00       | 1.00           |     |   |
| Frpb, ped/bikes              | 0.99        |              | 1.00  | 1.00  | 1.00       | 0.98           |     |   |
| Flpb, ped/bikes              | 1.00        |              | 1.00  | 1.00  | 1.00       | 1.00           |     |   |
| Frt                          | 0.94        |              | 1.00  | 1.00  | 1.00       | 0.85           |     |   |
| Flt Protected                | 0.97        |              | 0.95  | 1.00  | 1.00       | 1.00           |     |   |
| Satd. Flow (prot)            | 1628        |              | 1727  | 1818  | 1977       | 1642           |     |   |
| Flt Permitted                | 0.97        |              | 0.14  | 1.00  | 1.00       | 1.00           |     |   |
| Satd. Flow (perm)            | 1628        |              | 253   | 1818  | 1977       | 1642           |     |   |
| Peak-hour factor, PHF        | 0.76        | 0.76         | 0.86  | 0.86  | 0.91       | 0.91           |     |   |
| Adj. Flow (vph)              | 171         | 132          | 116   | 744   | 813        | 154            |     |   |
| RTOR Reduction (vph)         | 33          | 0            | 0     | 0     | 0          | 46             |     |   |
| Lane Group Flow (vph)        | 270         | 0            | 116   | 744   | 813        | 108            |     |   |
| Confl. Peds. (#/hr)          | 3           | 3            | 3     |       |            | 3              |     |   |
| Heavy Vehicles (%)           | 2%          | 2%           | 1%    | 1%    | 1%         | 1%             |     |   |
| Turn Type                    | Prot        |              | pm+pt | NA    | NA         | Perm           |     |   |
| Protected Phases             | 4           |              | 1     | 12    | 2          |                |     |   |
| Permitted Phases             |             |              | 12    |       |            | 2              |     |   |
| Actuated Green, G (s)        | 16.2        |              | 54.4  | 58.4  | 44.4       | 44.4           |     |   |
| Effective Green, g (s)       | 16.2        |              | 54.4  | 58.4  | 44.4       | 44.4           |     |   |
| Actuated g/C Ratio           | 0.19        |              | 0.65  | 0.69  | 0.53       | 0.53           |     |   |
| Clearance Time (s)           | 4.0         |              | 4.0   |       | 5.6        | 5.6            |     |   |
| Vehicle Extension (s)        | 3.0         |              | 1.5   |       | 2.5        | 2.5            |     |   |
| Lane Grp Cap (vph)           | 313         |              | 338   | 1260  | 1042       | 865            |     |   |
| v/s Ratio Prot               | c0.17       |              | 0.04  | c0.41 | c0.41      |                |     |   |
| v/s Ratio Perm               |             |              | 0.18  |       |            | 0.07           |     |   |
| v/c Ratio                    | 0.86        |              | 0.34  | 0.59  | 0.78       | 0.13           |     |   |
| Uniform Delay, d1            | 32.9        |              | 11.0  | 6.7   | 16.0       | 10.1           |     |   |
| Progression Factor           | 1.00        |              | 1.00  | 1.00  | 1.00       | 1.00           |     |   |
| Incremental Delay, d2        | 20.9        |              | 0.2   | 0.5   | 3.7        | 0.0            |     |   |
| Delay (s)                    | 53.8        |              | 11.2  | 7.2   | 19.7       | 10.1           |     |   |
| Level of Service             | D           |              | В     | А     | В          | В              |     |   |
| Approach Delay (s)           | 53.8        |              |       | 7.7   | 18.2       |                |     |   |
| Approach LOS                 | D           |              |       | А     | В          |                |     |   |
| Intersection Summary         |             |              |       |       |            |                |     |   |
| HCM 2000 Control Delay       |             |              | 19.0  | Н     | CM 2000    | Level of Servi | ce  | В |
| HCM 2000 Volume to Cap       | acity ratio |              | 0.78  |       |            |                |     |   |
| Actuated Cycle Length (s)    |             |              | 84.2  |       | um of lost |                | 13. | 6 |
| Intersection Capacity Utiliz | zation      |              | 69.3% |       |            | of Service     |     | С |
| Analysis Period (min)        |             |              | 15    |       |            |                |     |   |
| c Critical Lane Group        |             |              |       |       |            |                |     |   |

Future (2042) Build Weekday PM Peak

### Queues 19: Route 161 & Society Rd

|                         | ≯    | •    | † 1  | Ļ        | 1    |
|-------------------------|------|------|------|----------|------|
| Lane Group              | EBL  | NBL  | NBT  | •<br>SBT | SBR  |
|                         |      |      |      |          |      |
| Lane Group Flow (vph)   | 303  | 116  | 744  | 813      | 154  |
| v/c Ratio               | 0.88 | 0.34 | 0.57 | 0.78     | 0.17 |
| Control Delay           | 55.3 | 6.9  | 8.2  | 22.9     | 4.9  |
| Queue Delay             | 0.0  | 0.0  | 0.0  | 0.0      | 0.0  |
| Total Delay             | 55.3 | 6.9  | 8.2  | 22.9     | 4.9  |
| Queue Length 50th (ft)  | 137  | 16   | 167  | 332      | 14   |
| Queue Length 95th (ft)  | #198 | 30   | 231  | 492      | 43   |
| Internal Link Dist (ft) | 1539 |      | 3382 | 952      |      |
| Turn Bay Length (ft)    |      | 105  |      |          | 120  |
| Base Capacity (vph)     | 361  | 343  | 1295 | 1042     | 911  |
| Starvation Cap Reductn  | 0    | 0    | 0    | 0        | 0    |
| Spillback Cap Reductn   | 0    | 0    | 0    | 0        | 0    |
| Storage Cap Reductn     | 0    | 0    | 0    | 0        | 0    |
| Reduced v/c Ratio       | 0.84 | 0.34 | 0.57 | 0.78     | 0.17 |
| Intersection Summary    |      |      |      |          |      |

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. #

|                                | ∢    | •    | Ť     | 1    | 1       | Ļ          |
|--------------------------------|------|------|-------|------|---------|------------|
| Movement                       | WBL  | WBR  | NBT   | NBR  | SBL     | SBT        |
| Lane Configurations            | ٦    | 1    | 4Î    |      | 5       | <b>^</b>   |
| Traffic Volume (veh/h)         | 10   | 30   | 790   | 20   | 50      | 890        |
| Future Volume (Veh/h)          | 10   | 30   | 790   | 20   | 50      | 890        |
| Sign Control                   | Stop |      | Free  |      |         | Free       |
| Grade                          | -3%  |      | 0%    |      |         | 0%         |
| Peak Hour Factor               | 0.89 | 0.89 | 0.89  | 0.89 | 0.95    | 0.95       |
| Hourly flow rate (vph)         | 11   | 34   | 888   | 22   | 53      | 937        |
| Pedestrians                    |      |      |       |      |         |            |
| Lane Width (ft)                |      |      |       |      |         |            |
| Walking Speed (ft/s)           |      |      |       |      |         |            |
| Percent Blockage               |      |      |       |      |         |            |
| Right turn flare (veh)         |      | 1    |       |      |         |            |
| Median type                    |      |      | None  |      |         | None       |
| Median storage veh)            |      |      |       |      |         |            |
| Upstream signal (ft)           |      |      | 1032  |      |         |            |
| pX, platoon unblocked          | 0.75 | 0.75 |       |      | 0.75    |            |
| vC, conflicting volume         | 1942 | 899  |       |      | 910     |            |
| vC1, stage 1 conf vol          | 1712 | 0,77 |       |      | ,10     |            |
| vC2, stage 2 conf vol          |      |      |       |      |         |            |
| vCu, unblocked vol             | 2089 | 699  |       |      | 714     |            |
| tC, single (s)                 | 6.4  | 6.2  |       |      | 4.1     |            |
| tC, 2 stage (s)                | 0.11 | 0.12 |       |      |         |            |
| tF (s)                         | 3.5  | 3.3  |       |      | 2.2     |            |
| p0 queue free %                | 73   | 90   |       |      | 92      |            |
| cM capacity (veh/h)            | 40   | 330  |       |      | 669     |            |
|                                |      |      | CD 1  | CD 1 |         |            |
| Direction, Lane #              | WB 1 | NB 1 | SB 1  | SB 2 |         |            |
| Volume Total                   | 45   | 910  | 53    | 937  |         |            |
| Volume Left                    | 11   | 0    | 53    | 0    |         |            |
| Volume Right                   | 34   | 22   | 0     | 0    |         |            |
| cSH                            | 164  | 1700 | 669   | 1700 |         |            |
| Volume to Capacity             | 0.27 | 0.54 | 0.08  | 0.55 |         |            |
| Queue Length 95th (ft)         | 26   | 0    | 6     | 0    |         |            |
| Control Delay (s)              | 43.7 | 0.0  | 10.8  | 0.0  |         |            |
| Lane LOS                       | E    |      | B     |      |         |            |
| Approach Delay (s)             | 43.7 | 0.0  | 0.6   |      |         |            |
| Approach LOS                   | E    |      |       |      |         |            |
| Intersection Summary           |      |      |       |      |         |            |
| Average Delay                  |      |      | 1.3   |      |         |            |
| Intersection Capacity Utilizat | ion  |      | 56.8% | IC   | U Level | of Service |
| Analysis Period (min)          |      |      | 15    |      |         |            |

| HCM Signalized Intersection Capacity Analysis       |
|-----------------------------------------------------|
| 12: Route 161 & Industrial Park Rd/Chapman Woods Rd |

06/01/2023

|                                          | ٦           | +           | •     | 4     | +          | *         | •            | 1            | 1    | 1            | ŧ            | ~    |
|------------------------------------------|-------------|-------------|-------|-------|------------|-----------|--------------|--------------|------|--------------|--------------|------|
| Movement                                 | EBL         | EBT         | EBR   | WBL   | WBT        | WBR       | NBL          | NBT          | NBR  | SBL          | SBT          | SBR  |
| Lane Configurations                      | ሻሻ          | eî 👘        |       |       | \$         |           | ٦            | <b>∱</b> ₽   |      | ሻ            | <b>↑</b> ĵ≽  |      |
| Traffic Volume (vph)                     | 240         | 10          | 120   | 10    | 10         | 50        | 90           | 750          | 20   | 50           | 900          | 140  |
| Future Volume (vph)                      | 240         | 10          | 120   | 10    | 10         | 50        | 90           | 750          | 20   | 50           | 900          | 140  |
| Ideal Flow (vphpl)                       | 1900        | 1900        | 1900  | 1900  | 1900       | 1900      | 1900         | 1900         | 1900 | 1900         | 1900         | 1900 |
| Lane Width                               | 11          | 11          | 13    | 14    | 14         | 14        | 11           | 12           | 13   | 11           | 11           | 11   |
| Grade (%)                                |             | 2%          |       |       | -4%        |           |              | 0%           |      |              | 0%           |      |
| Total Lost time (s)                      | 4.4         | 5.0         |       |       | 5.0        |           | 4.0          | 6.2          |      | 4.0          | 6.0          |      |
| Lane Util. Factor                        | 0.97        | 1.00        |       |       | 1.00       |           | 1.00         | 0.95         |      | 1.00         | 0.95         |      |
| Frt                                      | 1.00        | 0.86        |       |       | 0.90       |           | 1.00         | 1.00         |      | 1.00         | 0.98         |      |
| Flt Protected                            | 0.95        | 1.00        |       |       | 0.99       |           | 0.95         | 1.00         |      | 0.95         | 1.00         |      |
| Satd. Flow (prot)                        | 3285        | 1536        |       |       | 1854       |           | 1711         | 3526         |      | 1711         | 3352         | _    |
| Flt Permitted                            | 0.95        | 1.00        |       |       | 0.93       |           | 0.15         | 1.00         |      | 0.29         | 1.00         |      |
| Satd. Flow (perm)                        | 3285        | 1536        |       | . = / | 1740       |           | 264          | 3526         |      | 514          | 3352         |      |
| Peak-hour factor, PHF                    | 0.86        | 0.86        | 0.86  | 0.76  | 0.76       | 0.76      | 0.90         | 0.90         | 0.90 | 0.91         | 0.91         | 0.91 |
| Adj. Flow (vph)                          | 279         | 12          | 140   | 13    | 13         | 66        | 100          | 833          | 22   | 55           | 989          | 154  |
| RTOR Reduction (vph)                     | 0           | 123         | 0     | 0     | 58         | 0         | 0            | 2            | 0    | 0            | 11           | 0    |
| Lane Group Flow (vph)                    | 279         | 29          | 0     | 0     | 34         | 0         | 100          | 853          | 0    | 55           | 1132         | 0    |
| Heavy Vehicles (%)                       | 2%          | 2%          | 2%    | 0%    | 0%         | 0%        | 2%           | 2%           | 2%   | 2%           | 2%           | 2%   |
| Turn Type                                | Prot        | NA          |       | Perm  | NA         |           | pm+pt        | NA           |      | pm+pt        | NA           | _    |
| Protected Phases                         | 4           | 8           |       | 0     | 8          |           | 1            | 6            |      | 5            | 2            |      |
| Permitted Phases                         | Г /         | 8           |       | 8     | 0.0        |           | 6            | 77 1         |      | 2            | 25.0         |      |
| Actuated Green, G (s)                    | 5.6         | 9.3         |       |       | 9.3<br>9.3 |           | 42.0         | 37.1         |      | 39.2         | 35.8         |      |
| Effective Green, g (s)                   | 5.6<br>0.07 | 9.3<br>0.12 |       |       | 9.3        |           | 42.0<br>0.56 | 37.1<br>0.49 |      | 39.2<br>0.52 | 35.8<br>0.48 |      |
| Actuated g/C Ratio<br>Clearance Time (s) | 4.4         | 5.0         |       |       | 5.0        |           | 0.56<br>4.0  | 6.2          |      | 0.52<br>4.0  | 0.48<br>6.0  |      |
| Vehicle Extension (s)                    | 2.5         | 1.5         |       |       | 5.0<br>1.5 |           | 4.0<br>1.5   | 2.5          |      | 4.0          | 2.5          |      |
|                                          | 2.5         | 1.5         |       |       | 215        |           | 242          | 1744         |      | 322          | 1600         |      |
| Lane Grp Cap (vph)<br>v/s Ratio Prot     | c0.08       | 0.02        |       |       | 215        |           | c0.03        | 0.24         |      | 0.01         | c0.34        |      |
| v/s Ratio Perm                           | LU.U0       | 0.02        |       |       | c0.02      |           | 0.20         | 0.24         |      | 0.01         | CU.34        |      |
| v/c Ratio                                | 1.14        | 0.15        |       |       | 0.16       |           | 0.20         | 0.49         |      | 0.08         | 0.71         |      |
| Uniform Delay, d1                        | 34.7        | 29.3        |       |       | 29.4       |           | 9.7          | 12.6         |      | 9.0          | 15.5         |      |
| Progression Factor                       | 1.00        | 1.00        |       |       | 1.00       |           | 1.00         | 12.0         |      | 0.42         | 0.30         |      |
| Incremental Delay, d2                    | 100.1       | 0.1         |       |       | 0.1        |           | 0.4          | 1.00         |      | 0.42         | 2.2          |      |
| Delay (s)                                | 134.8       | 29.5        |       |       | 29.5       |           | 10.1         | 13.6         |      | 3.9          | 6.8          |      |
| Level of Service                         | 104.0<br>F  | 27.5<br>C   |       |       | 27.5<br>C  |           | B            | B            |      | A            | A            |      |
| Approach Delay (s)                       |             | 97.6        |       |       | 29.5       |           | D            | 13.3         |      | 7            | 6.7          |      |
| Approach LOS                             |             | F           |       |       | C          |           |              | В            |      |              | A            |      |
| Intersection Summary                     |             |             |       |       |            |           |              |              |      |              |              |      |
| HCM 2000 Control Delay                   |             |             | 24.5  | Н     | CM 2000    | Level of  | Service      |              | С    |              |              |      |
| HCM 2000 Volume to Capa                  | acity ratio |             | 0.64  |       |            |           |              |              |      |              |              |      |
| Actuated Cycle Length (s)                |             |             | 75.0  |       | um of los  |           |              |              | 19.6 |              |              |      |
| Intersection Capacity Utiliz             | ation       |             | 60.3% | IC    | CU Level   | of Servic | е            |              | В    |              |              |      |
| Analysis Period (min)                    |             |             | 15    |       |            |           |              |              |      |              |              |      |
| c Critical Lane Group                    |             |             |       |       |            |           |              |              |      |              |              |      |

| Queues                                              |
|-----------------------------------------------------|
| 12: Route 161 & Industrial Park Rd/Chapman Woods Rd |

|                         | ≯     | -    | -    | ▲    | 1    | 1    | ŧ    |
|-------------------------|-------|------|------|------|------|------|------|
| Lane Group              | EBL   | EBT  | WBT  | NBL  | NBT  | SBL  | SBT  |
| Lane Group Flow (vph)   | 279   | 152  | 92   | 100  | 855  | 55   | 1143 |
| v/c Ratio               | 1.14  | 0.49 | 0.34 | 0.37 | 0.47 | 0.15 | 0.70 |
| Control Delay           | 135.3 | 12.9 | 16.1 | 9.8  | 13.6 | 3.2  | 6.9  |
| Queue Delay             | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| Total Delay             | 135.3 | 12.9 | 16.1 | 9.8  | 13.6 | 3.2  | 6.9  |
| Queue Length 50th (ft)  | ~79   | 5    | 11   | 16   | 136  | 2    | 41   |
| Queue Length 95th (ft)  | #142  | 49   | 37   | 36   | 201  | m7   | 82   |
| Internal Link Dist (ft) |       | 619  | 594  |      | 240  |      | 743  |
| Turn Bay Length (ft)    | 150   |      |      | 200  |      | 100  |      |
| Base Capacity (vph)     | 245   | 605  | 624  | 273  | 1821 | 378  | 1644 |
| Starvation Cap Reductn  | 0     | 0    | 0    | 0    | 0    | 0    | 0    |
| Spillback Cap Reductn   | 0     | 0    | 0    | 0    | 0    | 0    | 0    |
| Storage Cap Reductn     | 0     | 0    | 0    | 0    | 0    | 0    | 0    |
| Reduced v/c Ratio       | 1.14  | 0.25 | 0.15 | 0.37 | 0.47 | 0.15 | 0.70 |
|                         |       |      |      |      |      |      |      |

#### Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles. 95th percentile volume exceeds capacity, queue may be longer. #

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

# HCM Signalized Intersection Capacity Analysis 40: Route 161 & I-95 NB Exit Ramp/Burger King Driveway

06/01/2023

|                              | ٦           | -    | $\mathbf{F}$ | •     | ł         | •          | •       | 1          | 1    | 1     | Ŧ       | ~    |
|------------------------------|-------------|------|--------------|-------|-----------|------------|---------|------------|------|-------|---------|------|
| Movement                     | EBL         | EBT  | EBR          | WBL   | WBT       | WBR        | NBL     | NBT        | NBR  | SBL   | SBT     | SBR  |
| Lane Configurations          | ሻሻ          | ¢Î   |              | ۲     |           | 1          |         | <b>∱</b> ⊅ |      | ٦     | <u></u> |      |
| Traffic Volume (vph)         | 280         | 20   | 90           | 30    | 0         | 60         | 0       | 1080       | 20   | 50    | 1100    | 0    |
| Future Volume (vph)          | 280         | 20   | 90           | 30    | 0         | 60         | 0       | 1080       | 20   | 50    | 1100    | 0    |
| Ideal Flow (vphpl)           | 1900        | 1900 | 1900         | 1900  | 1900      | 1900       | 1900    | 1900       | 1900 | 1900  | 1900    | 1900 |
| Total Lost time (s)          | 5.4         | 5.4  |              | 4.0   |           | 4.0        |         | 7.0        |      | 4.5   | 7.0     |      |
| Lane Util. Factor            | 0.97        | 1.00 |              | 1.00  |           | 1.00       |         | 0.95       |      | 1.00  | 0.95    |      |
| Frt                          | 1.00        | 0.88 |              | 1.00  |           | 0.85       |         | 1.00       |      | 1.00  | 1.00    |      |
| Flt Protected                | 0.95        | 1.00 |              | 0.95  |           | 1.00       |         | 1.00       |      | 0.95  | 1.00    |      |
| Satd. Flow (prot)            | 3433        | 1635 |              | 1770  |           | 1583       |         | 3529       |      | 1770  | 3539    |      |
| Flt Permitted                | 0.95        | 1.00 |              | 0.95  |           | 1.00       |         | 1.00       |      | 0.11  | 1.00    |      |
| Satd. Flow (perm)            | 3433        | 1635 |              | 1770  |           | 1583       |         | 3529       |      | 200   | 3539    |      |
| Peak-hour factor, PHF        | 0.92        | 0.92 | 0.92         | 0.92  | 0.92      | 0.92       | 0.92    | 0.92       | 0.92 | 0.92  | 0.92    | 0.92 |
| Adj. Flow (vph)              | 304         | 22   | 98           | 33    | 0         | 65         | 0       | 1174       | 22   | 54    | 1196    | 0    |
| RTOR Reduction (vph)         | 0           | 82   | 0            | 0     | 0         | 60         | 0       | 2          | 0    | 0     | 0       | 0    |
| Lane Group Flow (vph)        | 304         | 38   | 0            | 33    | 0         | 5          | 0       | 1194       | 0    | 54    | 1196    | 0    |
| Turn Type                    | Split       | NA   |              | Prot  |           | Perm       |         | NA         |      | pm+pt | NA      |      |
| Protected Phases             | 4           | 4    |              | 8     |           |            |         | 6          |      | 5     | 2       |      |
| Permitted Phases             |             |      |              |       |           | 8          |         |            |      | 2     |         |      |
| Actuated Green, G (s)        | 12.0        | 12.0 |              | 5.7   |           | 5.7        |         | 32.7       |      | 40.9  | 40.9    |      |
| Effective Green, g (s)       | 12.0        | 12.0 |              | 5.7   |           | 5.7        |         | 32.7       |      | 40.9  | 40.9    |      |
| Actuated g/C Ratio           | 0.16        | 0.16 |              | 0.08  |           | 0.08       |         | 0.44       |      | 0.55  | 0.55    |      |
| Clearance Time (s)           | 5.4         | 5.4  |              | 4.0   |           | 4.0        |         | 7.0        |      | 4.5   | 7.0     |      |
| Vehicle Extension (s)        | 3.0         | 3.0  |              | 3.0   |           | 3.0        |         | 3.0        |      | 3.0   | 3.0     |      |
| Lane Grp Cap (vph)           | 549         | 261  |              | 134   |           | 120        |         | 1538       |      | 186   | 1929    |      |
| v/s Ratio Prot               | c0.09       | 0.02 |              | c0.02 |           |            |         | c0.34      |      | 0.01  | c0.34   |      |
| v/s Ratio Perm               |             |      |              |       |           | 0.00       |         |            |      | 0.14  |         |      |
| v/c Ratio                    | 0.55        | 0.14 |              | 0.25  |           | 0.04       |         | 0.78       |      | 0.29  | 0.62    |      |
| Uniform Delay, d1            | 29.0        | 27.1 |              | 32.6  |           | 32.1       |         | 18.0       |      | 11.1  | 11.7    |      |
| Progression Factor           | 1.00        | 1.00 |              | 1.00  |           | 1.00       |         | 0.76       |      | 0.72  | 0.41    |      |
| Incremental Delay, d2        | 1.2         | 0.3  |              | 1.0   |           | 0.1        |         | 2.0        |      | 0.8   | 1.3     |      |
| Delay (s)                    | 30.2        | 27.3 |              | 33.6  |           | 32.3       |         | 15.8       |      | 8.8   | 6.1     |      |
| Level of Service             | С           | С    |              | С     |           | С          |         | В          |      | А     | А       |      |
| Approach Delay (s)           |             | 29.4 |              |       | 32.7      |            |         | 15.8       |      |       | 6.2     |      |
| Approach LOS                 |             | С    |              |       | С         |            |         | В          |      |       | А       |      |
| Intersection Summary         |             |      |              |       |           |            |         |            |      |       |         |      |
| HCM 2000 Control Delay       |             |      | 14.3         | Н     | CM 2000   | Level of   | Service |            | В    |       |         |      |
| HCM 2000 Volume to Capa      | acity ratio |      | 0.68         |       |           |            |         |            |      |       |         |      |
| Actuated Cycle Length (s)    |             |      | 75.0         |       | um of los |            |         |            | 20.9 |       |         |      |
| Intersection Capacity Utiliz | ation       |      | 63.4%        | IC    | U Level   | of Service | •       |            | В    |       |         |      |
| Analysis Period (min)        |             |      | 15           |       |           |            |         |            |      |       |         |      |
| c Critical Lane Group        |             |      |              |       |           |            |         |            |      |       |         |      |

c Critical Lane Group

## Queues 40: Route 161 & I-95 NB Exit Ramp/Burger King Driveway

06/01/2023

|                         | ≯    | -    | 4    | •    | 1     | 1    | Ŧ    |  |
|-------------------------|------|------|------|------|-------|------|------|--|
| Lane Group              | EBL  | EBT  | WBL  | WBR  | NBT   | SBL  | SBT  |  |
| Lane Group Flow (vph)   | 304  | 120  | 33   | 65   | 1196  | 54   | 1196 |  |
| v/c Ratio               | 0.55 | 0.35 | 0.20 | 0.20 | 0.72  | 0.22 | 0.61 |  |
| Control Delay           | 32.7 | 11.6 | 34.1 | 1.4  | 18.9  | 8.1  | 6.5  |  |
| Queue Delay             | 0.0  | 0.0  | 0.0  | 0.0  | 0.0   | 0.0  | 0.0  |  |
| Total Delay             | 32.7 | 11.6 | 34.1 | 1.4  | 18.9  | 8.1  | 6.5  |  |
| Queue Length 50th (ft)  | 68   | 9    | 15   | 0    | 150   | 5    | 64   |  |
| Queue Length 95th (ft)  | 100  | 50   | 39   | 0    | m#364 | m13  | 108  |  |
| Internal Link Dist (ft) |      | 426  |      |      | 743   |      | 431  |  |
| Turn Bay Length (ft)    | 250  |      |      |      |       | 240  |      |  |
| Base Capacity (vph)     | 823  | 466  | 162  | 328  | 1659  | 244  | 1966 |  |
| Starvation Cap Reductn  | 0    | 0    | 0    | 0    | 0     | 0    | 0    |  |
| Spillback Cap Reductn   | 0    | 0    | 0    | 0    | 0     | 0    | 0    |  |
| Storage Cap Reductn     | 0    | 0    | 0    | 0    | 0     | 0    | 0    |  |
| Reduced v/c Ratio       | 0.37 | 0.26 | 0.20 | 0.20 | 0.72  | 0.22 | 0.61 |  |
|                         |      |      |      |      |       |      |      |  |

#### Intersection Summary

# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
 m Volume for 95th percentile queue is metered by upstream signal.

# HCM Signalized Intersection Capacity Analysis 10: Route 161 & Park and Ride Lot/King Arthur Dr

06/01/2023

|                                                   | ≯           | -    | $\mathbf{F}$ | *    | +              | •           | 1          | 1           | 1         | 1          | Ŧ           | ~    |
|---------------------------------------------------|-------------|------|--------------|------|----------------|-------------|------------|-------------|-----------|------------|-------------|------|
| Movement                                          | EBL         | EBT  | EBR          | WBL  | WBT            | WBR         | NBL        | NBT         | NBR       | SBL        | SBT         | SBR  |
| Lane Configurations                               |             | 4    |              |      | <del>ન</del> ી | 1           | <u> </u>   | <u></u> ↑↑₽ |           | ሻ          | - <b>††</b> |      |
| Traffic Volume (vph)                              | 30          | 0    | 20           | 90   | 0              | 50          | 0          | 1360        | 60        | 60         | 1190        | 10   |
| Future Volume (vph)                               | 30          | 0    | 20           | 90   | 0              | 50          | 0          | 1360        | 60        | 60         | 1190        | 10   |
| Ideal Flow (vphpl)                                | 1900        | 1900 | 1900         | 1900 | 1900           | 1900        | 1900       | 1900        | 1900      | 1900       | 1900        | 1900 |
| Lane Width                                        | 12          | 12   | 12           | 11   | 12             | 12          | 12         | 12          | 8         | 11         | 11          | 11   |
| Total Lost time (s)                               |             | 4.2  |              |      | 4.2            | 4.0         |            | 6.6         |           | 4.0        | 6.1         |      |
| Lane Util. Factor                                 |             | 1.00 |              |      | 1.00           | 1.00        |            | 0.91        |           | 1.00       | 0.95        |      |
| Frpb, ped/bikes                                   |             | 0.99 |              |      | 1.00           | 0.99        |            | 1.00        |           | 1.00       | 1.00        |      |
| Flpb, ped/bikes                                   |             | 1.00 |              |      | 0.99           | 1.00        |            | 1.00        |           | 1.00       | 1.00        |      |
| Frt                                               |             | 0.95 |              |      | 1.00           | 0.85        |            | 0.99        |           | 1.00       | 1.00        |      |
| Flt Protected                                     |             | 0.97 |              |      | 0.95           | 1.00        |            | 1.00        |           | 0.95       | 1.00        |      |
| Satd. Flow (prot)                                 |             | 1677 |              |      | 1743           | 1549        |            | 5048        |           | 1711       | 3416        |      |
| Flt Permitted                                     |             | 0.81 |              |      | 0.80           | 1.00        |            | 1.00        |           | 0.12       | 1.00        |      |
| Satd. Flow (perm)                                 |             | 1406 |              |      | 1477           | 1549        |            | 5048        |           | 213        | 3416        |      |
| Peak-hour factor, PHF                             | 0.92        | 0.92 | 0.92         | 0.91 | 0.91           | 0.91        | 0.96       | 0.96        | 0.96      | 0.98       | 0.98        | 0.98 |
| Adj. Flow (vph)                                   | 33          | 0    | 22           | 99   | 0.71           | 55          | 0          | 1417        | 62        | 61         | 1214        | 10   |
| RTOR Reduction (vph)                              | 0           | 44   | 0            | 0    | 0              | 38          | 0          | 0           | 0         | 0          | 0           | 0    |
| Lane Group Flow (vph)                             | 0           | 11   | 0            | 0    | 99             | 17          | Ŭ<br>Û     | 1480        | 0         | 61         | 1224        | 0    |
| Confl. Peds. (#/hr)                               | 4           |      | 4            | 4    | ,,             | 4           | 4          | 1400        | 4         | 4          | 1227        | 4    |
| Heavy Vehicles (%)                                | 3%          | 3%   | 3%           | 3%   | 3%             | 3%          | 2%         | 2%          | 2%        | 2%         | 2%          | 2%   |
| Turn Type                                         | Perm        | NA   | 370          | Perm | NA             | pm+ov       | pm+pt      | NA          | 270       | pm+pt      | NA          | 270  |
| Protected Phases                                  | FCIIII      | 4    |              | Fenn | 8              | pin+00<br>1 | рш+рі<br>5 | 2           |           | рш+рі<br>1 | 6           |      |
| Permitted Phases                                  | 4           | 4    |              | 8    | 0              | 8           | 2          | Z           |           | 6          | 0           |      |
| Actuated Green, G (s)                             | 4           | 15.0 |              | 0    | 15.0           | 20.6        | Z          | 39.6        |           | 49.7       | 49.7        |      |
| Effective Green, g (s)                            |             | 15.0 |              |      | 15.0           | 20.0        |            | 39.6        |           | 49.7       | 49.7        |      |
| Actuated g/C Ratio                                |             | 0.20 |              |      | 0.20           | 0.27        |            | 0.53        |           | 0.66       | 0.66        |      |
| Clearance Time (s)                                |             | 4.2  |              |      | 4.2            | 4.0         |            | 6.6         |           | 4.0        | 6.1         |      |
| Vehicle Extension (s)                             |             | 4.2  |              |      | 4.2            | 4.0         |            | 2.5         |           | 2.5        | 2.5         |      |
|                                                   |             |      |              |      |                |             |            |             |           |            |             |      |
| Lane Grp Cap (vph)                                |             | 281  |              |      | 295            | 425         |            | 2665        |           | 252        | 2263        |      |
| v/s Ratio Prot                                    |             | 0.01 |              |      | -0.07          | 0.00        |            | 0.29        |           | 0.02       | c0.36       |      |
| v/s Ratio Perm                                    |             | 0.01 |              |      | c0.07          | 0.01        |            | 0.57        |           | 0.14       | 0.54        |      |
| v/c Ratio                                         |             | 0.04 |              |      | 0.34           | 0.04        |            | 0.56        |           | 0.24       | 0.54        |      |
| Uniform Delay, d1                                 |             | 24.2 |              |      | 25.7           | 20.0        |            | 11.8        |           | 5.8        | 6.7         |      |
| Progression Factor                                |             | 1.00 |              |      | 1.00           | 1.00        |            | 0.51        |           | 0.76       | 0.65        |      |
| Incremental Delay, d2                             |             | 0.0  |              |      | 0.2            | 0.0         |            | 0.7         |           | 0.3        | 0.2         |      |
| Delay (s)                                         |             | 24.2 |              |      | 26.0           | 20.0        |            | 6.7         |           | 4.7        | 4.5         |      |
| Level of Service                                  |             | С    |              |      | С              | В           |            | A           |           | A          | A           |      |
| Approach Delay (s)                                |             | 24.2 |              |      | 23.8           |             |            | 6.7         |           |            | 4.5         |      |
| Approach LOS                                      |             | С    |              |      | С              |             |            | А           |           |            | А           |      |
| Intersection Summary                              |             |      |              |      |                |             |            |             |           |            |             |      |
| HCM 2000 Control Delay<br>HCM 2000 Volume to Capa | city ratio  |      | 7.0<br>0.53  | Н    | CM 2000        | ) Level of  | Service    |             | А         |            |             |      |
| Actuated Cycle Length (s)                         | icity ratio |      | 75.0         | c    | um of log      | st time (s) |            |             | 14.8      |            |             |      |
| Intersection Capacity Utiliza                     | ation       |      | 61.8%        |      |                | of Servic   |            |             | 14.0<br>B |            |             |      |
| Analysis Period (min)                             |             |      | 15           |      | O Level        | U SEIVIC    | C          |             | D         |            |             |      |
| c Critical Lane Group                             |             |      | 10           |      |                |             |            |             |           |            |             |      |
| c Chilical Laffe Group                            |             |      |              |      |                |             |            |             |           |            |             |      |

|                         | -    | +    | •    | 1    | 1    | Ļ    |
|-------------------------|------|------|------|------|------|------|
| Lane Group              | EBT  | WBT  | WBR  | NBT  | SBL  | SBT  |
| Lane Group Flow (vph)   | 55   | 99   | 55   | 1480 | 61   | 1224 |
| v/c Ratio               | 0.15 | 0.34 | 0.11 | 0.54 | 0.21 | 0.54 |
| Control Delay           | 1.7  | 29.5 | 6.4  | 6.8  | 4.4  | 5.3  |
| Queue Delay             | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| Total Delay             | 1.7  | 29.5 | 6.4  | 6.8  | 4.4  | 5.3  |
| Queue Length 50th (ft)  | 0    | 40   | 1    | 67   | 4    | 187  |
| Queue Length 95th (ft)  | 6    | 82   | 23   | 72   | m8   | 66   |
| Internal Link Dist (ft) | 104  | 603  |      | 431  |      | 69   |
| Turn Bay Length (ft)    |      |      | 110  |      |      |      |
| Base Capacity (vph)     | 418  | 350  | 495  | 2720 | 286  | 2264 |
| Starvation Cap Reductn  | 0    | 0    | 0    | 0    | 0    | 0    |
| Spillback Cap Reductn   | 0    | 0    | 0    | 0    | 0    | 0    |
| Storage Cap Reductn     | 0    | 0    | 0    | 0    | 0    | 0    |
| Reduced v/c Ratio       | 0.13 | 0.28 | 0.11 | 0.54 | 0.21 | 0.54 |
| Intersection Summary    |      |      |      |      |      |      |

m Volume for 95th percentile queue is metered by upstream signal.

HCM Signalized Intersection Capacity Analysis 8: Route 161 & Frontage Road to I-95 SB Ramps/Daddy's Noodles Driveway

06/01/2023

|                                   | ٭           | -    | $\mathbf{F}$ | 4    | ł              | •          | •            | 1          | 1    | 1     | ţ            | -∢       |
|-----------------------------------|-------------|------|--------------|------|----------------|------------|--------------|------------|------|-------|--------------|----------|
| Movement                          | EBL         | EBT  | EBR          | WBL  | WBT            | WBR        | NBL          | NBT        | NBR  | SBL   | SBT          | SBR      |
| Lane Configurations               | ٦<br>۲      |      | 77           |      | <del>ب</del> ا | 1          | ሻሻ           | <b>∱</b> ₽ |      | 1     | - <b>†</b> † | 1        |
| Traffic Volume (vph)              | 150         | 0    | 630          | 0    | 0              | 0          | 220          | 670        | 0    | 0     | 630          | 230      |
| Future Volume (vph)               | 150         | 0    | 630          | 0    | 0              | 0          | 220          | 670        | 0    | 0     | 630          | 230      |
| Ideal Flow (vphpl)                | 1900        | 1900 | 1900         | 1900 | 1900           | 1900       | 1900         | 1900       | 1900 | 1900  | 1900         | 1900     |
| Lane Width                        | 11          | 12   | 12           | 12   | 12             | 12         | 12           | 12         | 12   | 12    | 12           | 12       |
| Total Lost time (s)               | 5.9         |      | 5.9          |      |                |            | 4.0          | 5.5        |      |       | 7.0          | 5.9      |
| Lane Util. Factor                 | 1.00        |      | 0.88         |      |                |            | 0.97         | 0.95       |      |       | 0.95         | 1.00     |
| Frpb, ped/bikes                   | 1.00        |      | 1.00         |      |                |            | 1.00         | 1.00       |      |       | 1.00         | 0.99     |
| Flpb, ped/bikes                   | 1.00        |      | 1.00         |      |                |            | 1.00         | 1.00       |      |       | 1.00         | 1.00     |
| Frt                               | 1.00        |      | 0.85         |      |                |            | 1.00         | 1.00       |      |       | 1.00         | 0.85     |
| Flt Protected                     | 0.95        |      | 1.00         |      |                |            | 0.95         | 1.00       |      |       | 1.00         | 1.00     |
| Satd. Flow (prot)                 | 1728        |      | 2814         |      |                |            | 3433         | 3539       |      |       | 3539         | 1568     |
| Flt Permitted                     | 0.95        |      | 1.00         |      |                |            | 0.95         | 1.00       |      |       | 1.00         | 1.00     |
| Satd. Flow (perm)                 | 1728        |      | 2814         |      |                |            | 3433         | 3539       |      |       | 3539         | 1568     |
| Peak-hour factor, PHF             | 0.95        | 0.92 | 0.95         | 0.92 | 0.92           | 0.92       | 0.96         | 0.96       | 0.92 | 0.92  | 0.93         | 0.93     |
| Adj. Flow (vph)                   | 158         | 0    | 663          | 0    | 0              | 0          | 229          | 698        | 0    | 0     | 677          | 247      |
| RTOR Reduction (vph)              | 0           | 0    | 350          | 0    | 0              | 0          | 0            | 0          | 0    | 0     | 0            | 91       |
| Lane Group Flow (vph)             | 158         | 0    | 313          | 0    | 0              | 0          | 229          | 698        | 0    | 0     | 677          | 156      |
| Confl. Peds. (#/hr)               | 3           |      | 3            | 3    |                | 3          | 3            |            | 3    | 3     |              | 3        |
| Heavy Vehicles (%)                | 1%          | 2%   | 1%           | 2%   | 2%             | 2%         | 2%           | 2%         | 2%   | 2%    | 2%           | 2%       |
| Turn Type                         | Prot        |      | pt+ov        |      |                | Prot       | Prot         | NA         |      | pm+pt | NA           | pm+ov    |
| Protected Phases                  | 8           |      | 81           | 4    | 4              | 4          | 1            | 6          |      | 5     | 2            | 8        |
| Permitted Phases                  |             |      | • •          | •    | •              | •          |              |            |      | 2     | _            | 2        |
| Actuated Green, G (s)             | 13.7        |      | 30.3         |      |                |            | 10.7         | 49.9       |      | _     | 33.7         | 47.4     |
| Effective Green, g (s)            | 13.7        |      | 30.3         |      |                |            | 10.7         | 49.9       |      |       | 33.7         | 47.4     |
| Actuated g/C Ratio                | 0.18        |      | 0.40         |      |                |            | 0.14         | 0.67       |      |       | 0.45         | 0.63     |
| Clearance Time (s)                | 5.9         |      | 0.10         |      |                |            | 4.0          | 5.5        |      |       | 7.0          | 5.9      |
| Vehicle Extension (s)             | 2.5         |      |              |      |                |            | 2.5          | 2.5        |      |       | 2.5          | 2.5      |
| Lane Grp Cap (vph)                | 315         |      | 1136         |      |                |            | 489          | 2354       |      |       | 1590         | 990      |
| v/s Ratio Prot                    | c0.09       |      | 0.11         |      |                |            | c0.07        | 0.20       |      |       | c0.19        | 0.03     |
| v/s Ratio Perm                    | 00.07       |      | 0.11         |      |                |            | 00.07        | 0.20       |      |       | 00.17        | 0.03     |
| v/c Ratio                         | 0.50        |      | 0.28         |      |                |            | 0.47         | 0.30       |      |       | 0.43         | 0.07     |
| Uniform Delay, d1                 | 27.6        |      | 15.0         |      |                |            | 29.5         | 5.2        |      |       | 14.1         | 5.6      |
| Progression Factor                | 1.00        |      | 1.00         |      |                |            | 0.72         | 1.07       |      |       | 1.00         | 1.00     |
| Incremental Delay, d2             | 0.9         |      | 0.1          |      |                |            | 0.5          | 0.0        |      |       | 0.8          | 0.1      |
| Delay (s)                         | 28.5        |      | 15.1         |      |                |            | 21.7         | 5.6        |      |       | 14.9         | 5.7      |
| Level of Service                  | 20.0<br>C   |      | B            |      |                |            | C            | A          |      |       | B            | 0.7<br>A |
| Approach Delay (s)                | U           | 17.7 | D            |      | 0.0            |            | U            | 9.6        |      |       | 12.4         | Л        |
| Approach LOS                      |             | B    |              |      | A              |            |              | A          |      |       | B            |          |
| Intersection Summary              |             |      |              |      |                |            |              |            |      |       |              |          |
| HCM 2000 Control Delay            |             |      | 13.1         | Н    | CM 2000        | Level of   | Service      |            | В    |       |              |          |
| HCM 2000 Volume to Capa           | acity ratio |      | 0.49         |      |                |            | 0011100      |            |      |       |              |          |
| Actuated Cycle Length (s)         |             |      | 75.0         |      | um of los      |            |              |            | 22.0 |       |              |          |
| Intersection Capacity Utilization | ation       |      | 51.2%        | IC   | CU Level       | of Service | <del>)</del> |            | А    |       |              |          |
| Analysis Period (min)             |             |      | 15           |      |                |            |              |            |      |       |              |          |
| c Critical Lane Group             |             |      |              |      |                |            |              |            |      |       |              |          |

# Queues 8: Route 161 & Frontage Road to I-95 SB Ramps/Daddy's Noodles Driveway

|                         | ≯    | $\mathbf{r}$ | 1    | 1    | Ŧ    | 1    |
|-------------------------|------|--------------|------|------|------|------|
| Lane Group              | EBL  | EBR          | NBL  | NBT  | SBT  | SBR  |
| Lane Group Flow (vph)   | 158  | 663          | 229  | 698  | 677  | 247  |
| v/c Ratio               | 0.50 | 0.46         | 0.47 | 0.30 | 0.43 | 0.22 |
| Control Delay           | 32.3 | 3.1          | 23.6 | 6.5  | 16.7 | 1.2  |
| Queue Delay             | 0.0  | 0.0          | 0.0  | 0.0  | 0.0  | 0.0  |
| Total Delay             | 32.3 | 3.1          | 23.6 | 6.5  | 16.7 | 1.2  |
| Queue Length 50th (ft)  | 67   | 12           | 38   | 47   | 108  | 0    |
| Queue Length 95th (ft)  | 110  | 36           | 51   | 161  | 192  | 19   |
| Internal Link Dist (ft) |      |              |      | 824  | 1287 |      |
| Turn Bay Length (ft)    |      |              |      |      |      | 160  |
| Base Capacity (vph)     | 355  | 1389         | 508  | 2355 | 1590 | 1132 |
| Starvation Cap Reductn  | 0    | 0            | 0    | 0    | 0    | 0    |
| Spillback Cap Reductn   | 0    | 0            | 0    | 0    | 0    | 0    |
| Storage Cap Reductn     | 0    | 0            | 0    | 0    | 0    | 0    |
| Reduced v/c Ratio       | 0.45 | 0.48         | 0.45 | 0.30 | 0.43 | 0.22 |
| Intersection Summary    |      |              |      |      |      |      |

# HCM Signalized Intersection Capacity Analysis 4: Route 161 & U.S. Route 1 (Boston Post Rd)

| 06/ | 01 | /20 | 23 |
|-----|----|-----|----|
|     |    |     |    |

|                                | ۶         | -          | $\mathbf{\hat{z}}$ | 1     | +         | *          | 1       | 1     | ۲    | 1     | ţ          | -    |
|--------------------------------|-----------|------------|--------------------|-------|-----------|------------|---------|-------|------|-------|------------|------|
| Movement                       | EBL       | EBT        | EBR                | WBL   | WBT       | WBR        | NBL     | NBT   | NBR  | SBL   | SBT        | SBR  |
| Lane Configurations            | ሻ         | <b>∱</b> } |                    | ٦.    | <b>↑</b>  | 1          | ሻ       | ef 👘  |      | ሻ     | <b>≜</b> ⊅ |      |
| Traffic Volume (vph)           | 110       | 260        | 200                | 280   | 430       | 220        | 220     | 460   | 150  | 200   | 370        | 120  |
| Future Volume (vph)            | 110       | 260        | 200                | 280   | 430       | 220        | 220     | 460   | 150  | 200   | 370        | 120  |
| Ideal Flow (vphpl)             | 1900      | 1900       | 1900               | 1900  | 1900      | 1900       | 1900    | 1900  | 1900 | 1900  | 1900       | 1900 |
| Lane Width                     | 11        | 11         | 12                 | 11    | 11        | 11         | 11      | 11    | 11   | 11    | 12         | 12   |
| Total Lost time (s)            | 4.0       | 5.5        |                    | 4.0   | 5.0       | 5.0        | 4.0     | 5.5   |      | 4.0   | 5.0        |      |
| Lane Util. Factor              | 1.00      | 0.95       |                    | 1.00  | 1.00      | 1.00       | 1.00    | 1.00  |      | 1.00  | 0.95       |      |
| Frpb, ped/bikes                | 1.00      | 0.99       |                    | 1.00  | 1.00      | 0.98       | 1.00    | 1.00  |      | 1.00  | 0.99       |      |
| Flpb, ped/bikes                | 1.00      | 1.00       |                    | 1.00  | 1.00      | 1.00       | 1.00    | 1.00  |      | 1.00  | 1.00       |      |
| Frt                            | 1.00      | 0.93       |                    | 1.00  | 1.00      | 0.85       | 1.00    | 0.96  |      | 1.00  | 0.96       |      |
| Flt Protected                  | 0.95      | 1.00       |                    | 0.95  | 1.00      | 1.00       | 0.95    | 1.00  |      | 0.95  | 1.00       |      |
| Satd. Flow (prot)              | 1694      | 3147       |                    | 1710  | 1801      | 1495       | 1710    | 1728  |      | 1694  | 3357       |      |
| Flt Permitted                  | 0.21      | 1.00       |                    | 0.24  | 1.00      | 1.00       | 0.38    | 1.00  |      | 0.10  | 1.00       |      |
| Satd. Flow (perm)              | 373       | 3147       |                    | 431   | 1801      | 1495       | 676     | 1728  |      | 174   | 3357       |      |
| Peak-hour factor, PHF          | 0.94      | 0.94       | 0.94               | 0.89  | 0.89      | 0.89       | 0.94    | 0.94  | 0.94 | 0.97  | 0.97       | 0.97 |
| Adj. Flow (vph)                | 117       | 277        | 213                | 315   | 483       | 247        | 234     | 489   | 160  | 206   | 381        | 124  |
| RTOR Reduction (vph)           | 0         | 127        | 0                  | 0     | 0         | 112        | 0       | 11    | 0    | 0     | 28         | 0    |
| Lane Group Flow (vph)          | 117       | 363        | 0                  | 315   | 483       | 135        | 234     | 638   | 0    | 206   | 477        | 0    |
| Confl. Peds. (#/hr)            | 2         |            | 2                  | 2     |           | 2          | 2       |       | 2    | 2     |            | 2    |
| Heavy Vehicles (%)             | 3%        | 3%         | 3%                 | 2%    | 2%        | 2%         | 2%      | 2%    | 2%   | 3%    | 3%         | 3%   |
| Turn Type                      | pm+pt     | NA         |                    | pm+pt | NA        | Perm       | pm+pt   | NA    |      | pm+pt | NA         |      |
| Protected Phases               | 1         | 6          |                    | 5     | 2         |            | 3       | 8     |      | 7     | 4          |      |
| Permitted Phases               | 6         |            |                    | 2     |           | 2          | 8       |       |      | 4     |            |      |
| Actuated Green, G (s)          | 27.5      | 22.2       |                    | 42.5  | 33.2      | 33.2       | 54.2    | 41.8  |      | 52.3  | 41.1       |      |
| Effective Green, g (s)         | 27.5      | 22.2       |                    | 42.5  | 33.2      | 33.2       | 54.2    | 41.8  |      | 52.3  | 41.1       |      |
| Actuated g/C Ratio             | 0.25      | 0.20       |                    | 0.39  | 0.30      | 0.30       | 0.49    | 0.38  |      | 0.48  | 0.37       |      |
| Clearance Time (s)             | 4.0       | 5.5        |                    | 4.0   | 5.0       | 5.0        | 4.0     | 5.5   |      | 4.0   | 5.0        |      |
| Vehicle Extension (s)          | 2.0       | 2.5        |                    | 2.0   | 2.5       | 2.5        | 2.0     | 2.0   |      | 2.0   | 2.0        |      |
| Lane Grp Cap (vph)             | 156       | 635        |                    | 350   | 543       | 451        | 449     | 656   |      | 237   | 1254       |      |
| v/s Ratio Prot                 | 0.04      | 0.12       |                    | c0.13 | 0.27      |            | 0.06    | c0.37 |      | c0.09 | 0.14       |      |
| v/s Ratio Perm                 | 0.15      |            |                    | c0.22 |           | 0.09       | 0.20    |       |      | 0.32  |            |      |
| v/c Ratio                      | 0.75      | 0.57       |                    | 0.90  | 0.89      | 0.30       | 0.52    | 0.97  |      | 0.87  | 0.38       |      |
| Uniform Delay, d1              | 35.6      | 39.6       |                    | 26.6  | 36.6      | 29.5       | 16.8    | 33.6  |      | 27.3  | 25.2       |      |
| Progression Factor             | 1.00      | 1.00       |                    | 1.00  | 1.00      | 1.00       | 1.00    | 1.00  |      | 1.00  | 1.00       |      |
| Incremental Delay, d2          | 16.3      | 3.7        |                    | 24.6  | 19.2      | 1.7        | 0.5     | 28.2  |      | 26.1  | 0.1        |      |
| Delay (s)                      | 51.9      | 43.3       |                    | 51.2  | 55.9      | 31.2       | 17.3    | 61.8  |      | 53.5  | 25.2       |      |
| Level of Service               | D         | D          |                    | D     | E         | С          | В       | E     |      | D     | С          |      |
| Approach Delay (s)             |           | 45.0       |                    |       | 48.6      |            |         | 50.0  |      |       | 33.4       |      |
| Approach LOS                   |           | D          |                    |       | D         |            |         | D     |      |       | С          |      |
| Intersection Summary           |           |            |                    |       |           |            |         |       |      |       |            |      |
| HCM 2000 Control Delay         |           |            | 45.0               | H     | CM 2000   | Level of   | Service |       | D    |       |            |      |
| HCM 2000 Volume to Capac       | ity ratio |            | 0.96               |       |           |            |         |       |      |       |            |      |
| Actuated Cycle Length (s)      | 9         |            | 110.0              | Si    | um of los | t time (s) |         |       | 19.0 |       |            |      |
| Intersection Capacity Utilizat | ion       |            | 89.5%              |       | U Level   |            |         |       | E    |       |            |      |
| Analysis Period (min)          |           |            | 15                 |       |           |            |         |       |      |       |            |      |
| c Critical Lane Group          |           |            |                    |       |           |            |         |       |      |       |            |      |

## Queues 4: Route 161 & U.S. Route 1 (Boston Post Rd)

|                         | ٨    | +    | 4    | Ļ    | *    | •    | Ť    | *    | Ļ    |
|-------------------------|------|------|------|------|------|------|------|------|------|
| Lane Group              | EBL  | EBT  | WBL  | WBT  | WBR  | NBL  | NBT  | SBL  | SBT  |
| Lane Group Flow (vph)   | 117  | 490  | 315  | 483  | 247  | 234  | 649  | 206  | 505  |
| v/c Ratio               | 0.72 | 0.64 | 0.89 | 0.89 | 0.44 | 0.51 | 0.97 | 0.87 | 0.40 |
| Control Delay           | 52.0 | 31.1 | 53.9 | 56.5 | 13.6 | 18.5 | 62.5 | 60.0 | 24.6 |
| Queue Delay             | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| Total Delay             | 52.0 | 31.1 | 53.9 | 56.5 | 13.6 | 18.5 | 62.5 | 60.0 | 24.6 |
| Queue Length 50th (ft)  | 52   | 112  | 161  | 321  | 45   | 87   | 431  | 97   | 125  |
| Queue Length 95th (ft)  | #124 | 170  | #283 | #494 | 113  | 135  | #674 | #249 | 177  |
| Internal Link Dist (ft) |      | 985  |      | 299  |      |      | 1287 |      | 769  |
| Turn Bay Length (ft)    | 90   |      | 310  |      | 140  | 190  |      | 260  |      |
| Base Capacity (vph)     | 162  | 782  | 356  | 556  | 572  | 495  | 678  | 237  | 1278 |
| Starvation Cap Reductn  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Spillback Cap Reductn   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Storage Cap Reductn     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Reduced v/c Ratio       | 0.72 | 0.63 | 0.88 | 0.87 | 0.43 | 0.47 | 0.96 | 0.87 | 0.40 |
| Interception Cummon     |      |      |      |      |      |      |      |      |      |

#### Intersection Summary

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

|                                   | ≯         | *         | •        | 1        | ţ          | ∢          |
|-----------------------------------|-----------|-----------|----------|----------|------------|------------|
| Movement                          | EBL       | EBR       | NBL      | NBT      | SBT        | SBR        |
| Lane Configurations               | ۲         | 1         | ٦        | <b>†</b> | ¢Î,        |            |
| Traffic Volume (veh/h)            | 30        | 60        | 50       | 700      | 540        | 20         |
| Future Volume (Veh/h)             | 30        | 60        | 50       | 700      | 540        | 20         |
| Sign Control                      | Stop      |           |          | Free     | Free       |            |
| Grade                             | 0%        |           |          | 0%       | 0%         |            |
| Peak Hour Factor                  | 0.83      | 0.83      | 0.96     | 0.96     | 0.90       | 0.90       |
| Hourly flow rate (vph)            | 36        | 72        | 52       | 729      | 600        | 22         |
| Pedestrians                       | 5         |           |          | 5        | 5          |            |
| Lane Width (ft)                   | 13.0      |           |          | 12.0     | 12.0       |            |
| Walking Speed (ft/s)              | 3.5       |           |          | 3.5      | 3.5        |            |
| Percent Blockage                  | 1         |           |          | 0        | 0          |            |
| Right turn flare (veh)            |           |           |          |          |            |            |
| Median type                       |           |           |          | None     | None       |            |
| Median storage veh)               |           |           |          |          |            |            |
| Upstream signal (ft)              |           |           |          | 849      |            |            |
| pX, platoon unblocked             | 0.72      |           |          |          |            |            |
| vC, conflicting volume            | 1454      | 621       | 627      |          |            |            |
| vC1, stage 1 conf vol             |           |           |          |          |            |            |
| vC2, stage 2 conf vol             |           |           |          |          |            |            |
| vCu, unblocked vol                | 1436      | 621       | 627      |          |            |            |
| tC, single (s)                    | 6.4       | 6.2       | 4.1      |          |            |            |
| tC, 2 stage (s)                   |           |           |          |          |            |            |
| tF (s)                            | 3.5       | 3.3       | 2.2      |          |            |            |
| p0 queue free %                   | 63        | 85        | 95       |          |            |            |
| cM capacity (veh/h)               | 98        | 477       | 950      |          |            |            |
| Direction, Lane #                 | EB 1      | EB 2      | NB 1     | NB 2     | SB 1       |            |
| Volume Total                      | 36        | 72        | 52       | 729      | 622        |            |
| Volume Left                       | 36        | 0         | 52       | 0        | 022        |            |
| Volume Right                      | 0         | 72        | 0        | 0        | 22         |            |
| cSH                               | 98        | 477       | 950      | 1700     | 1700       |            |
| Volume to Capacity                | 0.37      | 0.15      | 0.05     | 0.43     | 0.37       |            |
| Queue Length 95th (ft)            | 37        | 13        | 4        | 0.45     | 0.37       |            |
| <b>2</b>                          | 61.8      | 13.9      | 9.0      | 0.0      | 0.0        |            |
| Control Delay (s)<br>Lane LOS     | F         | 13.7<br>B | 7.0<br>A | 0.0      | 0.0        |            |
| Approach Delay (s)                | 29.9      | D         | 0.6      |          | 0.0        |            |
| Approach LOS                      | 29.9<br>D |           | 0.0      |          | 0.0        |            |
|                                   | U         |           |          |          |            |            |
| Intersection Summary              |           |           |          |          |            |            |
| Average Delay                     |           |           | 2.4      |          |            |            |
| Intersection Capacity Utilization | tion      |           | 48.4%    | IC       | CU Level c | of Service |
| Analysis Period (min)             |           |           | 15       |          |            |            |

|                              | ≯            | +          | t        | •            | 1            | 1                |      |
|------------------------------|--------------|------------|----------|--------------|--------------|------------------|------|
| Movement                     | EBL          | EBT        | WBT      | WBR          | SBL          | SBR              |      |
| Lane Configurations          | <u> </u>     | <u>LDT</u> | <u> </u> | 1            | Y            | 501              |      |
| Traffic Volume (vph)         | 200          | 290        | 300      | 180          | 250          | 200              |      |
| Future Volume (vph)          | 200          | 290        | 300      | 180          | 250          | 200              |      |
| Ideal Flow (vphpl)           | 1900         | 1900       | 1900     | 1900         | 1900         | 1900             |      |
| Lane Width                   | 1900         | 1900       | 1900     | 1900         | 1900         | 1900             |      |
| Total Lost time (s)          | 4.0          | 5.8        | 5.8      | 5.8          | 4.0          | 13               |      |
|                              |              |            |          |              |              |                  |      |
| Lane Util. Factor            | 1.00         | 1.00       | 1.00     | 1.00<br>0.92 | 1.00<br>0.97 |                  |      |
| Frpb, ped/bikes              | 1.00         | 1.00       | 1.00     |              |              |                  |      |
| Flpb, ped/bikes              | 0.99         | 1.00       | 1.00     | 1.00         | 1.00         |                  |      |
| Frt<br>Elt Drotootod         | 1.00         | 1.00       | 1.00     | 0.85         | 0.94         |                  |      |
| Flt Protected                | 0.95         | 1.00       | 1.00     | 1.00         | 0.97         |                  |      |
| Satd. Flow (prot)            | 1718         | 1881       | 1818     | 1426         | 1741         |                  |      |
| Flt Permitted                | 0.29         | 1.00       | 1.00     | 1.00         | 0.97         |                  |      |
| Satd. Flow (perm)            | 522          | 1881       | 1818     | 1426         | 1741         | 0.01             |      |
| Peak-hour factor, PHF        | 0.92         | 0.92       | 0.80     | 0.80         | 0.91         | 0.91             |      |
| Adj. Flow (vph)              | 217          | 315        | 375      | 225          | 275          | 220              |      |
| RTOR Reduction (vph)         | 0            | 0          | 0        | 166          | 30           | 0                |      |
| Lane Group Flow (vph)        | 217          | 315        | 375      | 59           | 465          | 0                |      |
| Confl. Peds. (#/hr)          | 31           |            |          | 31           | 31           | 31               |      |
| Heavy Vehicles (%)           | 1%           | 1%         | 1%       | 1%           | 0%           | 0%               |      |
| Turn Type                    | pm+pt        | NA         | NA       | Perm         | Prot         |                  |      |
| Protected Phases             | 1            | 2          | 2        |              | 4            |                  |      |
| Permitted Phases             | 2            |            |          | 2            |              |                  |      |
| Actuated Green, G (s)        | 27.6         | 21.3       | 21.3     | 21.3         | 25.1         |                  |      |
| Effective Green, g (s)       | 27.6         | 21.3       | 21.3     | 21.3         | 25.1         |                  |      |
| Actuated g/C Ratio           | 0.34         | 0.26       | 0.26     | 0.26         | 0.31         |                  |      |
| Clearance Time (s)           | 4.0          | 5.8        | 5.8      | 5.8          | 4.0          |                  |      |
| Vehicle Extension (s)        | 1.5          | 2.5        | 2.5      | 2.5          | 1.5          |                  |      |
| Lane Grp Cap (vph)           | 271          | 495        | 478      | 375          | 540          |                  |      |
| v/s Ratio Prot               | c0.06        | 0.17       | 0.21     |              | c0.27        |                  |      |
| v/s Ratio Perm               | c0.21        |            |          | 0.04         |              |                  |      |
| v/c Ratio                    | 0.80         | 0.64       | 0.78     | 0.16         | 0.86         |                  |      |
| Uniform Delay, d1            | 22.5         | 26.4       | 27.7     | 22.9         | 26.3         |                  |      |
| Progression Factor           | 1.00         | 1.00       | 1.00     | 1.00         | 1.00         |                  |      |
| Incremental Delay, d2        | 14.7         | 2.3        | 8.0      | 0.1          | 12.9         |                  |      |
| Delay (s)                    | 37.2         | 28.7       | 35.6     | 23.1         | 39.1         |                  |      |
| Level of Service             | D            | С          | D        | С            | D            |                  |      |
| Approach Delay (s)           |              | 32.2       | 30.9     |              | 39.1         |                  |      |
| Approach LOS                 |              | С          | С        |              | D            |                  |      |
| Intersection Summary         |              |            |          |              |              |                  |      |
| HCM 2000 Control Delay       |              |            | 33.8     | H            | CM 2000      | Level of Service | С    |
| HCM 2000 Volume to Cap       | pacity ratio |            | 0.69     |              |              |                  |      |
| Actuated Cycle Length (s)    |              |            | 80.9     | Si           | um of lost   | t time (s)       | 17.8 |
| Intersection Capacity Utiliz |              |            | 65.7%    |              |              | of Service       | C    |
| Analysis Period (min)        |              |            | 15       |              |              |                  |      |
| c Critical Lane Group        |              |            |          |              |              |                  |      |
|                              |              |            |          |              |              |                  |      |

## Queues 37: Rt 156 (Main St) & Route 161

|                         | ٦    | -    | -    | •    | 1    |
|-------------------------|------|------|------|------|------|
| Lane Group              | EBL  | EBT  | WBT  | WBR  | SBL  |
| Lane Group Flow (vph)   | 217  | 315  | 375  | 225  | 495  |
| v/c Ratio               | 0.76 | 0.62 | 0.77 | 0.41 | 0.86 |
| Control Delay           | 41.3 | 34.5 | 41.7 | 6.7  | 43.7 |
| Queue Delay             | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| Total Delay             | 41.3 | 34.5 | 41.7 | 6.7  | 43.7 |
| Queue Length 50th (ft)  | 88   | 165  | 206  | 0    | 266  |
| Queue Length 95th (ft)  | #202 | 257  | #268 | 36   | #474 |
| Internal Link Dist (ft) |      | 576  | 456  |      | 584  |
| Turn Bay Length (ft)    | 170  |      |      | 170  |      |
| Base Capacity (vph)     | 285  | 572  | 553  | 589  | 597  |
| Starvation Cap Reductn  | 0    | 0    | 0    | 0    | 0    |
| Spillback Cap Reductn   | 0    | 0    | 0    | 0    | 0    |
| Storage Cap Reductn     | 0    | 0    | 0    | 0    | 0    |
| Reduced v/c Ratio       | 0.76 | 0.55 | 0.68 | 0.38 | 0.83 |
| Intersection Summary    |      |      |      |      |      |

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

|                                 | ≯    | *         | •         | 1     | ţ          |            |
|---------------------------------|------|-----------|-----------|-------|------------|------------|
| Movement                        | EBL  | EBR       | NBL       | NBT   | SBT        | SBR        |
| Lane Configurations             | Υ    |           |           | र्भ   | 4          |            |
| Traffic Volume (veh/h)          | 60   | 80        | 60        | 340   | 400        | 90         |
| Future Volume (Veh/h)           | 60   | 80        | 60        | 340   | 400        | 90         |
| Sign Control                    | Stop |           |           | Free  | Free       |            |
| Grade                           | 0%   |           |           | 0%    | 0%         |            |
| Peak Hour Factor                | 0.87 | 0.87      | 0.84      | 0.84  | 0.91       | 0.91       |
| Hourly flow rate (vph)          | 69   | 92        | 71        | 405   | 440        | 99         |
| Pedestrians                     | 19   |           |           | 19    | 19         |            |
| Lane Width (ft)                 | 14.0 |           |           | 16.0  | 16.0       |            |
| Walking Speed (ft/s)            | 3.5  |           |           | 3.5   | 3.5        |            |
| Percent Blockage                | 2    |           |           | 2     | 2          |            |
| Right turn flare (veh)          | £    |           |           | £     | ~          |            |
| Median type                     |      |           |           | None  | None       |            |
| Median storage veh)             |      |           |           | NUTIC | None       |            |
| Upstream signal (ft)            |      |           |           | 664   |            |            |
| pX, platoon unblocked           |      |           |           | 004   |            |            |
| vC, conflicting volume          | 1074 | 528       | 558       |       |            |            |
| vC1, stage 1 conf vol           | 1074 | 520       | 550       |       |            |            |
| vC2, stage 2 conf vol           |      |           |           |       |            |            |
| vCu, unblocked vol              | 1074 | 528       | 558       |       |            |            |
| tC, single (s)                  | 6.4  | 6.2       | 4.1       |       |            |            |
| tC, 2 stage (s)                 | 0.4  | 0.2       | 4.1       |       |            |            |
| tF (s)                          | 3.5  | 3.3       | 2.2       |       |            |            |
| p0 queue free %                 | 68   | 3.3<br>83 | 93        |       |            |            |
| cM capacity (veh/h)             | 218  | 530       | 93<br>996 |       |            |            |
|                                 |      |           |           |       |            |            |
| Direction, Lane #               | EB 1 | NB 1      | SB 1      |       |            |            |
| Volume Total                    | 161  | 476       | 539       |       |            |            |
| Volume Left                     | 69   | 71        | 0         |       |            |            |
| Volume Right                    | 92   | 0         | 99        |       |            |            |
| cSH                             | 328  | 996       | 1700      |       |            |            |
| Volume to Capacity              | 0.49 | 0.07      | 0.32      |       |            |            |
| Queue Length 95th (ft)          | 64   | 6         | 0         |       |            |            |
| Control Delay (s)               | 26.1 | 2.0       | 0.0       |       |            |            |
| Lane LOS                        | D    | А         |           |       |            |            |
| Approach Delay (s)              | 26.1 | 2.0       | 0.0       |       |            |            |
| Approach LOS                    | D    |           |           |       |            |            |
| Intersection Summary            |      |           |           |       |            |            |
| Average Delay                   |      |           | 4.4       |       |            |            |
| Intersection Capacity Utilizati | ion  |           | 69.3%     | IC    | CU Level o | of Service |
| Analysis Period (min)           |      |           | 15        |       |            |            |

# HCM Unsignalized Intersection Capacity Analysis 30: Route 161 & State Rd/Lincoln St

|                                    | ۶         | +         | *     | 4        | Ļ         | *          | <    | 1    | *    | •    | Ŧ    | ~    |
|------------------------------------|-----------|-----------|-------|----------|-----------|------------|------|------|------|------|------|------|
| Movement                           | EBL       | EBT       | EBR   | WBL      | WBT       | WBR        | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
| Lane Configurations                |           | 4         |       |          | - ↔       |            |      | - ↔  |      |      | - ↔  |      |
| Traffic Volume (veh/h)             | 10        | 0         | 0     | 10       | 0         | 10         | 0    | 360  | 10   | 10   | 460  | 0    |
| Future Volume (Veh/h)              | 10        | 0         | 0     | 10       | 0         | 10         | 0    | 360  | 10   | 10   | 460  | 0    |
| Sign Control                       |           | Stop      |       |          | Stop      |            |      | Free |      |      | Free |      |
| Grade                              |           | 0%        |       |          | 0%        |            |      | 0%   |      |      | 0%   |      |
| Peak Hour Factor                   | 0.78      | 0.78      | 0.78  | 0.75     | 0.75      | 0.75       | 0.91 | 0.91 | 0.91 | 0.88 | 0.88 | 0.88 |
| Hourly flow rate (vph)             | 13        | 0         | 0     | 13       | 0         | 13         | 0    | 396  | 11   | 11   | 523  | 0    |
| Pedestrians                        |           | 19        |       |          | 19        |            |      | 19   |      |      | 19   |      |
| Lane Width (ft)                    |           | 12.0      |       |          | 12.0      |            |      | 12.0 |      |      | 12.0 |      |
| Walking Speed (ft/s)               |           | 3.5       |       |          | 3.5       |            |      | 3.5  |      |      | 3.5  |      |
| Percent Blockage                   |           | 2         |       |          | 2         |            |      | 2    |      |      | 2    |      |
| Right turn flare (veh)             |           |           |       |          |           |            |      |      |      |      |      |      |
| Median type                        |           |           |       |          |           |            |      | None |      |      | None |      |
| Median storage veh)                |           |           |       |          |           |            |      |      |      |      |      |      |
| Upstream signal (ft)               |           |           |       |          |           |            |      |      |      |      |      |      |
| pX, platoon unblocked              |           |           |       |          |           |            |      |      |      |      |      |      |
| vC, conflicting volume             | 998       | 990       | 561   | 984      | 984       | 440        | 542  |      |      | 426  |      |      |
| vC1, stage 1 conf vol              |           |           |       |          |           |            |      |      |      |      |      |      |
| vC2, stage 2 conf vol              |           |           |       |          |           |            |      |      |      |      |      |      |
| vCu, unblocked vol                 | 998       | 990       | 561   | 984      | 984       | 440        | 542  |      |      | 426  |      |      |
| tC, single (s)                     | 7.1       | 6.5       | 6.2   | 7.1      | 6.5       | 6.2        | 4.1  |      |      | 4.1  |      |      |
| tC, 2 stage (s)                    |           |           |       |          |           |            |      |      |      |      |      |      |
| tF (s)                             | 3.5       | 4.0       | 3.3   | 3.5      | 4.0       | 3.3        | 2.2  |      |      | 2.2  |      |      |
| p0 queue free %                    | 94        | 100       | 100   | 94       | 100       | 98         | 100  |      |      | 99   |      |      |
| cM capacity (veh/h)                | 205       | 237       | 512   | 212      | 237       | 595        | 1013 |      |      | 1118 |      |      |
| Direction, Lane #                  | EB 1      | WB 1      | NB 1  | SB 1     | -         |            |      |      |      | -    |      |      |
| Volume Total                       | 13        | 26        | 407   | 534      |           |            |      |      |      |      |      |      |
| Volume Left                        | 13        | 13        | 407   | 11       |           |            |      |      |      |      |      |      |
| Volume Right                       | 0         | 13        | 11    | 0        |           |            |      |      |      |      |      |      |
| cSH                                | 205       | 312       | 1013  | 1118     |           |            |      |      |      |      |      |      |
| Volume to Capacity                 | 0.06      | 0.08      | 0.00  | 0.01     |           |            |      |      |      |      |      |      |
| Queue Length 95th (ft)             | 0.00      | 0.00      | 0.00  | 0.01     |           |            |      |      |      |      |      |      |
| Control Delay (s)                  | 23.8      | 17.6      | 0.0   | 0.3      |           |            |      |      |      |      |      |      |
| Lane LOS                           | 23.0<br>C | 17.0<br>C | 0.0   | 0.3<br>A |           |            |      |      |      |      |      |      |
|                                    | 23.8      |           | 0.0   | 0.3      |           |            |      |      |      |      |      |      |
| Approach Delay (s)<br>Approach LOS | 23.8<br>C | 17.6<br>C | 0.0   | 0.3      |           |            |      |      |      |      |      |      |
| Intersection Summary               | <b>.</b>  | -         |       |          |           |            |      |      |      |      |      |      |
|                                    |           |           | 0.0   |          |           |            |      |      |      |      |      |      |
| Average Delay                      | ation     |           | 0.9   |          |           | of Comilar |      |      | Λ    |      |      |      |
| Intersection Capacity Utiliza      | 1000      |           | 46.9% | IC       | U Level ( | of Service |      |      | А    |      |      |      |
| Analysis Period (min)              |           |           | 15    |          |           |            |      |      |      |      |      |      |

|                              | ≯      | +    | Ļ     | •    | *         |            |
|------------------------------|--------|------|-------|------|-----------|------------|
| Movement                     | EBL    | EBT  | WBT   | WBR  | SBL       | SBR        |
| Lane Configurations          |        | र्स  | ¢Î    |      | - Y       |            |
| Traffic Volume (veh/h)       | 70     | 480  | 440   | 40   | 40        | 60         |
| Future Volume (Veh/h)        | 70     | 480  | 440   | 40   | 40        | 60         |
| Sign Control                 |        | Free | Free  |      | Stop      |            |
| Grade                        |        | 0%   | 0%    |      | 0%        |            |
| Peak Hour Factor             | 0.86   | 0.86 | 0.90  | 0.90 | 0.83      | 0.83       |
| Hourly flow rate (vph)       | 81     | 558  | 489   | 44   | 48        | 72         |
| Pedestrians                  |        | 6    | 6     |      | 6         |            |
| Lane Width (ft)              |        | 11.0 | 11.0  |      | 11.0      |            |
| Walking Speed (ft/s)         |        | 3.5  | 3.5   |      | 3.5       |            |
| Percent Blockage             |        | 1    | 1     |      | 1         |            |
| Right turn flare (veh)       |        |      |       |      |           |            |
| Median type                  |        | None | None  |      |           |            |
| Median storage veh)          |        |      |       |      |           |            |
| Upstream signal (ft)         |        |      |       |      |           |            |
| pX, platoon unblocked        |        |      |       |      |           |            |
| vC, conflicting volume       | 539    |      |       |      | 1243      | 523        |
| vC1, stage 1 conf vol        | 557    |      |       |      | 12-15     | 525        |
| vC2, stage 2 conf vol        |        |      |       |      |           |            |
| vCu, unblocked vol           | 539    |      |       |      | 1243      | 523        |
| tC, single (s)               | 4.1    |      |       |      | 6.4       | 6.2        |
| tC, 2 stage (s)              | 7.1    |      |       |      | 0.4       | 0.2        |
| tF (s)                       | 2.2    |      |       |      | 3.5       | 3.3        |
| p0 queue free %              | 92     |      |       |      | 73        | 87         |
| cM capacity (veh/h)          | 1029   |      |       |      | 177       | 552        |
|                              |        |      |       |      | 177       | 552        |
| Direction, Lane #            | EB 1   | WB 1 | SB 1  |      |           |            |
| Volume Total                 | 639    | 533  | 120   |      |           |            |
| Volume Left                  | 81     | 0    | 48    |      |           |            |
| Volume Right                 | 0      | 44   | 72    |      |           |            |
| cSH                          | 1029   | 1700 | 299   |      |           |            |
| Volume to Capacity           | 0.08   | 0.31 | 0.40  |      |           |            |
| Queue Length 95th (ft)       | 6      | 0    | 46    |      |           |            |
| Control Delay (s)            | 2.0    | 0.0  | 24.9  |      |           |            |
| Lane LOS                     | А      |      | С     |      |           |            |
| Approach Delay (s)           | 2.0    | 0.0  | 24.9  |      |           |            |
| Approach LOS                 |        |      | С     |      |           |            |
| Intersection Summary         |        |      |       |      |           |            |
| Average Delay                |        |      | 3.3   |      |           |            |
| Intersection Capacity Utiliz | zation |      | 72.3% | IC   | U Level ( | of Service |
| Analysis Period (min)        |        |      | 15    | .0   | 5 201011  |            |
|                              |        |      | 15    |      |           |            |

|                               | ۶     | -          | +              | A.   | 1         | 4          |
|-------------------------------|-------|------------|----------------|------|-----------|------------|
| Movement                      | EBL   | EBT        | WBT            | WBR  | SBL       | SBR        |
| Lane Configurations           |       | र्स        | 4Î             |      | - M       |            |
| Traffic Volume (veh/h)        | 20    | 540        | 470            | 20   | 10        | 20         |
| Future Volume (Veh/h)         | 20    | 540        | 470            | 20   | 10        | 20         |
| Sign Control                  |       | Free       | Free           |      | Stop      |            |
| Grade                         |       | 0%         | 0%             |      | 0%        |            |
| Peak Hour Factor              | 0.91  | 0.91       | 0.91           | 0.91 | 0.69      | 0.69       |
| Hourly flow rate (vph)        | 22    | 593        | 516            | 22   | 14        | 29         |
| Pedestrians                   |       | 4          | 4              |      | 4         |            |
| Lane Width (ft)               |       | 11.0       | 11.0           |      | 12.0      |            |
| Walking Speed (ft/s)          |       | 3.5        | 3.5            |      | 3.5       |            |
| Percent Blockage              |       | 0          | 0              |      | 0         |            |
| Right turn flare (veh)        |       | -          | -              |      |           |            |
| Median type                   |       | None       | None           |      |           |            |
| Median storage veh)           |       |            |                |      |           |            |
| Upstream signal (ft)          |       | 853        |                |      |           |            |
| pX, platoon unblocked         |       |            |                |      | 0.77      |            |
| vC, conflicting volume        | 542   |            |                |      | 1172      | 535        |
| vC1, stage 1 conf vol         | 0.12  |            |                |      |           |            |
| vC2, stage 2 conf vol         |       |            |                |      |           |            |
| vCu, unblocked vol            | 542   |            |                |      | 1075      | 535        |
| tC, single (s)                | 4.1   |            |                |      | 6.4       | 6.2        |
| tC, 2 stage (s)               |       |            |                |      | 0.11      | 0.2        |
| tF (s)                        | 2.2   |            |                |      | 3.5       | 3.3        |
| p0 queue free %               | 98    |            |                |      | 92        | 95         |
| cM capacity (veh/h)           | 1028  |            |                |      | 181       | 538        |
| Direction, Lane #             | EB 1  | WB 1       | SB 1           |      |           |            |
| Volume Total                  | 615   | 538        | 43             |      |           |            |
| Volume Left                   | 22    |            | 43<br>14       |      |           |            |
|                               | 0     | 0          | 14<br>29       |      |           |            |
| Volume Right<br>cSH           |       | 22<br>1700 | 327            |      |           |            |
|                               | 1028  |            |                |      |           |            |
| Volume to Capacity            | 0.02  | 0.32       | 0.13           |      |           |            |
| Queue Length 95th (ft)        | 2     | 0          | 11             |      |           |            |
| Control Delay (s)             | 0.6   | 0.0        | 17.7           |      |           |            |
| Lane LOS                      | A     | 0.0        | C              |      |           |            |
| Approach Delay (s)            | 0.6   | 0.0        | 17.7           |      |           |            |
| Approach LOS                  |       |            | С              |      |           |            |
| Intersection Summary          |       |            |                |      |           |            |
| Average Delay                 |       |            | 0.9            |      |           |            |
| Intersection Capacity Utiliza | ition |            | 55. <b>9</b> % | IC   | U Level o | of Service |
| Analysis Period (min)         |       |            | 15             |      |           |            |
| Analysis Fenou (min)          |       |            | 15             |      |           |            |

HCM Signalized Intersection Capacity Analysis 24: E Pattagansett Rd/Chapman Farms Rd & Route 161

06/01/2023

|                                                | 4     | ×           | 2           | Ť       | ×           | ۲          | 3       | ×            | 7           | í,     | *           | ×    |
|------------------------------------------------|-------|-------------|-------------|---------|-------------|------------|---------|--------------|-------------|--------|-------------|------|
| Movement                                       | SEL   | SET         | SER         | NWL     | NWT         | NWR        | NEL     | NET          | NER         | SWL    | SWT         | SWR  |
| Lane Configurations                            |       | र्स         | 1           |         | र्स         |            |         | र्स          | 1           |        | \$          |      |
| Traffic Volume (vph)                           | 10    | 520         | 280         | 20      | 480         | 10         | 260     | 0            | 30          | 10     | 10          | 10   |
| Future Volume (vph)                            | 10    | 520         | 280         | 20      | 480         | 10         | 260     | 0            | 30          | 10     | 10          | 10   |
|                                                | 1900  | 1900        | 1900        | 1900    | 1900        | 1900       | 1900    | 1900         | 1900        | 1900   | 1900        | 1900 |
| Lane Width                                     | 13    | 13          | 13          | 12      | 12          | 12         | 12      | 12           | 12          | 16     | 16          | 16   |
| Grade (%)                                      |       | 0%          |             |         | 0%          |            |         | 2%           |             |        | -4%         |      |
| Total Lost time (s)                            |       | 6.1         | 6.1         |         | 4.0         |            |         | 4.0          | 4.0         |        | 4.0         |      |
| Lane Util. Factor                              |       | 1.00        | 1.00        |         | 1.00        |            |         | 1.00         | 1.00        |        | 1.00        |      |
| Frpb, ped/bikes                                |       | 1.00        | 0.98        |         | 1.00        |            |         | 1.00         | 0.97        |        | 0.99        |      |
| Flpb, ped/bikes                                |       | 1.00        | 1.00        |         | 1.00        |            |         | 0.99         | 1.00        |        | 1.00        |      |
| Frt                                            |       | 1.00        | 0.85        |         | 1.00        |            |         | 1.00         | 0.85        |        | 0.95        |      |
| Flt Protected                                  |       | 1.00        | 1.00        |         | 1.00        |            |         | 0.95         | 1.00        |        | 0.98        |      |
| Satd. Flow (prot)                              |       | 1942        | 1615        |         | 1871        |            |         | 1757         | 1540        |        | 2042        |      |
| Flt Permitted                                  |       | 0.99        | 1.00        |         | 0.97        |            |         | 0.73         | 1.00        |        | 0.88        |      |
| Satd. Flow (perm)                              |       | 1921        | 1615        |         | 1826        |            |         | 1354         | 1540        |        | 1835        |      |
| Peak-hour factor, PHF                          | 0.90  | 0.90        | 0.90        | 0.95    | 0.95        | 0.95       | 0.92    | 0.92         | 0.92        | 0.75   | 0.75        | 0.75 |
| Adj. Flow (vph)                                | 11    | 578         | 311         | 21      | 505         | 11         | 283     | 0.72         | 33          | 13     | 13          | 13   |
| RTOR Reduction (vph)                           | 0     | 0           | 71          | 0       | 1           | 0          | 205     | 0            | 23          | 0      | 9           | 0    |
| Lane Group Flow (vph)                          | 0     | 589         | 240         | 0       | 536         | 0          | 0       | 283          | 10          | 0      | 30          | 0    |
| Confl. Peds. (#/hr)                            | 3     | 507         | 3           | 3       | 550         | 3          | 3       | 205          | 3           | 3      | 50          | 3    |
| Heavy Vehicles (%)                             | 1%    | 1%          | 1%          | 1%      | 1%          | 1%         | 1%      | 1%           | 1%          | 0%     | 0%          | 0%   |
|                                                | Perm  | NA          | Perm        | Perm    | NA          | 170        | Perm    | NA           | Perm        | Perm   | NA          | 070  |
| Protected Phases                               | CIIII | 2           | FCIIII      | F CIIII | 6           |            | FCIIII  | 4            | FCIIII      | FCIIII | 8           |      |
| Permitted Phases                               | 2     | Z           | 2           | 6       | 0           |            | 4       | 4            | 4           | 8      | 0           |      |
| Actuated Green, G (s)                          | 2     | 26.5        | 26.5        | 0       | 28.6        |            | 4       | 15.0         | 15.0        | 0      | 15.0        |      |
| Effective Green, g (s)                         |       | 26.5        | 26.5        |         | 28.6        |            |         | 15.0         | 15.0        |        | 15.0        |      |
| Actuated g/C Ratio                             |       | 0.51        | 0.51        |         | 0.55        |            |         | 0.29         | 0.29        |        | 0.29        |      |
| Clearance Time (s)                             |       | 6.1         | 6.1         |         | 4.0         |            |         | 4.0          | 4.0         |        | 4.0         |      |
| Vehicle Extension (s)                          |       | 3.0         | 3.0         |         | 1.5         |            |         | 1.5          | 1.5         |        | 1.5         |      |
|                                                |       |             | 829         |         |             |            |         | 393          | 447         |        | 533         |      |
| Lane Grp Cap (vph)<br>v/s Ratio Prot           |       | 986         | 829         |         | 1012        |            |         | 373          | 447         |        | 000         |      |
| v/s Ratio Perm                                 |       | c0.31       | 0.15        |         | 0.29        |            |         | c0.21        | 0.01        |        | 0.02        |      |
| v/c Ratio                                      |       | 0.60        | 0.15        |         | 0.29        |            |         | 0.72         | 0.01        |        | 0.02        |      |
|                                                |       |             |             |         |             |            |         |              |             |        |             |      |
| Uniform Delay, d1                              |       | 8.8<br>1.00 | 7.2         |         | 7.3         |            |         | 16.4<br>1.00 | 13.1        |        | 13.2        |      |
| Progression Factor                             |       | 1.00        | 1.00<br>0.2 |         | 1.00<br>0.2 |            |         |              | 1.00        |        | 1.00<br>0.0 |      |
| Incremental Delay, d2                          |       | 9.8         | 0.2<br>7.4  |         | 7.5         |            |         | 5.4<br>21.8  | 0.0<br>13.1 |        | 13.2        |      |
| Delay (s)<br>Level of Service                  |       | 9.0<br>A    | 7.4<br>A    |         | 7.5<br>A    |            |         | 21.0<br>C    | B           |        | 13.2<br>B   |      |
| Approach Delay (s)                             |       | 9.0         | A           |         | 7.5         |            |         | 20.9         | D           |        | ы<br>13.2   |      |
|                                                |       |             |             |         | 7.5<br>A    |            |         | 20.9<br>C    |             |        |             |      |
| Approach LOS                                   |       | А           |             |         | A           |            |         | C            |             |        | В           |      |
| Intersection Summary                           |       |             |             |         |             |            |         |              |             |        |             |      |
| HCM 2000 Control Delay                         |       |             | 10.7        | Н       | CM 2000     | Level of   | Service |              | В           |        |             |      |
| HCM 2000 Volume to Capacity                    | ratio |             | 0.64        |         |             |            |         |              |             |        |             |      |
| Actuated Cycle Length (s)                      |       |             | 51.6        |         | um of los   |            |         |              | 10.1        |        |             |      |
| Intersection Capacity Utilization              |       |             | 69.9%       | IC      | CU Level    | of Service | )       |              | С           |        |             |      |
| Analysis Period (min)<br>c Critical Lane Group |       |             | 15          |         |             |            |         |              |             |        |             |      |

Future (2042) Build Saturday Midday Peak

|                         | ×    | 2    | ×    | *    | ~    | *    |
|-------------------------|------|------|------|------|------|------|
| Lane Group              | SET  | SER  | NWT  | NET  | NER  | SWT  |
| Lane Group Flow (vph)   | 589  | 311  | 537  | 283  | 33   | 39   |
| v/c Ratio               | 0.60 | 0.35 | 0.53 | 0.73 | 0.07 | 0.09 |
| Control Delay           | 13.4 | 6.1  | 11.0 | 28.8 | 5.3  | 11.9 |
| Queue Delay             | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| Total Delay             | 13.4 | 6.1  | 11.0 | 28.8 | 5.3  | 11.9 |
| Queue Length 50th (ft)  | 107  | 23   | 84   | 67   | 0    | 6    |
| Queue Length 95th (ft)  | 281  | 86   | 238  | 178  | 14   | 21   |
| Internal Link Dist (ft) | 476  |      | 773  | 540  |      | 361  |
| Turn Bay Length (ft)    |      | 50   |      |      | 50   |      |
| Base Capacity (vph)     | 1690 | 1438 | 1648 | 784  | 909  | 1071 |
| Starvation Cap Reductn  | 5    | 0    | 0    | 0    | 0    | 0    |
| Spillback Cap Reductn   | 0    | 0    | 0    | 0    | 0    | 0    |
| Storage Cap Reductn     | 0    | 0    | 0    | 0    | 0    | 0    |
| Reduced v/c Ratio       | 0.35 | 0.22 | 0.33 | 0.36 | 0.04 | 0.04 |
| Intersection Summary    |      |      |      |      |      |      |

| Intersection                                                                                                                                                                        |                                                                        |                                                                      |                                                                      |                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|
| Intersection Delay, s/veh                                                                                                                                                           | 18.6                                                                   |                                                                      |                                                                      |                                                                   |
| Intersection LOS                                                                                                                                                                    | С                                                                      |                                                                      |                                                                      |                                                                   |
| Approach                                                                                                                                                                            | SE                                                                     | NW                                                                   | NE                                                                   | SW                                                                |
| Entry Lanes                                                                                                                                                                         | 1                                                                      | 1                                                                    | 1                                                                    | 1                                                                 |
| Conflicting Circle Lanes                                                                                                                                                            | 1                                                                      | 1                                                                    | 1                                                                    | 1                                                                 |
| Adj Approach Flow, veh/h                                                                                                                                                            | 900                                                                    | 537                                                                  | 316                                                                  | 39                                                                |
| Demand Flow Rate, veh/h                                                                                                                                                             | 909                                                                    | 542                                                                  | 319                                                                  | 39                                                                |
| Vehicles Circulating, veh/h                                                                                                                                                         | 47                                                                     | 297                                                                  | 608                                                                  | 817                                                               |
| Vehicles Exiting, veh/h                                                                                                                                                             | 809                                                                    | 630                                                                  | 348                                                                  | 22                                                                |
| Follow-Up Headway, s                                                                                                                                                                | 3.186                                                                  | 3.186                                                                | 3.186                                                                | 3.186                                                             |
| Ped Vol Crossing Leg, #/h                                                                                                                                                           | 3                                                                      | 3                                                                    | 3                                                                    | 3                                                                 |
| Ped Cap Adj                                                                                                                                                                         | 1.000                                                                  | 1.000                                                                | 1.000                                                                | 1.000                                                             |
| Approach Delay, s/veh                                                                                                                                                               | 22.6                                                                   | 15.1                                                                 | 14.7                                                                 | 8.2                                                               |
| Approach LOS                                                                                                                                                                        | C                                                                      | С                                                                    | В                                                                    | А                                                                 |
| Lane                                                                                                                                                                                | Left                                                                   | Left                                                                 | Left                                                                 | Left                                                              |
| Designated Moves                                                                                                                                                                    | LTR                                                                    | LTR                                                                  | LTR                                                                  | LTR                                                               |
| Assumed Moves                                                                                                                                                                       | LTR                                                                    | LTR                                                                  | LTR                                                                  |                                                                   |
|                                                                                                                                                                                     | LIK                                                                    | LIN                                                                  | LIR                                                                  | LTR                                                               |
| RT Channelized                                                                                                                                                                      | LIK                                                                    | LIK                                                                  | LIK                                                                  | LIR                                                               |
| Lane Util                                                                                                                                                                           | 1.000                                                                  | 1.000                                                                | 1.000                                                                | 1.000                                                             |
| Lane Util<br>Critical Headway, s                                                                                                                                                    | 1.000<br>5.193                                                         |                                                                      | 1.000<br>5.193                                                       | 1.000<br>5.193                                                    |
| Lane Util<br>Critical Headway, s<br>Entry Flow, veh/h                                                                                                                               | 1.000<br>5.193<br>909                                                  | 1.000<br>5.193<br>542                                                | 1.000<br>5.193<br>319                                                | 1.000<br>5.193<br>39                                              |
| Lane Util<br>Critical Headway, s<br>Entry Flow, veh/h<br>Cap Entry Lane, veh/h                                                                                                      | 1.000<br>5.193<br>909<br>1078                                          | 1.000<br>5.193<br>542<br>840                                         | 1.000<br>5.193<br>319<br>615                                         | 1.000<br>5.193<br>39<br>499                                       |
| Lane Util<br>Critical Headway, s<br>Entry Flow, veh/h<br>Cap Entry Lane, veh/h<br>Entry HV Adj Factor                                                                               | 1.000<br>5.193<br>909<br>1078<br>0.990                                 | 1.000<br>5.193<br>542<br>840<br>0.991                                | 1.000<br>5.193<br>319<br>615<br>0.991                                | 1.000<br>5.193<br>39<br>499<br>1.000                              |
| Lane Util<br>Critical Headway, s<br>Entry Flow, veh/h<br>Cap Entry Lane, veh/h<br>Entry HV Adj Factor<br>Flow Entry, veh/h                                                          | 1.000<br>5.193<br>909<br>1078<br>0.990<br>900                          | 1.000<br>5.193<br>542<br>840<br>0.991<br>537                         | 1.000<br>5.193<br>319<br>615<br>0.991<br>316                         | 1.000<br>5.193<br>39<br>499<br>1.000<br>39                        |
| Lane Util<br>Critical Headway, s<br>Entry Flow, veh/h<br>Cap Entry Lane, veh/h<br>Entry HV Adj Factor<br>Flow Entry, veh/h<br>Cap Entry, veh/h                                      | 1.000<br>5.193<br>909<br>1078<br>0.990<br>900<br>1067                  | 1.000<br>5.193<br>542<br>840<br>0.991<br>537<br>831                  | 1.000<br>5.193<br>319<br>615<br>0.991<br>316<br>609                  | 1.000<br>5.193<br>39<br>499<br>1.000<br>39<br>499                 |
| Lane Util<br>Critical Headway, s<br>Entry Flow, veh/h<br>Cap Entry Lane, veh/h<br>Entry HV Adj Factor<br>Flow Entry, veh/h<br>Cap Entry, veh/h<br>V/C Ratio                         | 1.000<br>5.193<br>909<br>1078<br>0.990<br>900<br>1067<br>0.844         | 1.000<br>5.193<br>542<br>840<br>0.991<br>537<br>831<br>0.646         | 1.000<br>5.193<br>319<br>615<br>0.991<br>316<br>609<br>0.519         | 1.000<br>5.193<br>39<br>499<br>1.000<br>39<br>499<br>0.078        |
| Lane Util<br>Critical Headway, s<br>Entry Flow, veh/h<br>Cap Entry Lane, veh/h<br>Entry HV Adj Factor<br>Flow Entry, veh/h<br>Cap Entry, veh/h<br>V/C Ratio<br>Control Delay, s/veh | 1.000<br>5.193<br>909<br>1078<br>0.990<br>900<br>1067<br>0.844<br>22.6 | 1.000<br>5.193<br>542<br>840<br>0.991<br>537<br>831<br>0.646<br>15.1 | 1.000<br>5.193<br>319<br>615<br>0.991<br>316<br>609<br>0.519<br>14.7 | 1.000<br>5.193<br>39<br>499<br>1.000<br>39<br>499<br>0.078<br>8.2 |
| Lane Util<br>Critical Headway, s<br>Entry Flow, veh/h<br>Cap Entry Lane, veh/h<br>Entry HV Adj Factor<br>Flow Entry, veh/h<br>Cap Entry, veh/h<br>V/C Ratio                         | 1.000<br>5.193<br>909<br>1078<br>0.990<br>900<br>1067<br>0.844         | 1.000<br>5.193<br>542<br>840<br>0.991<br>537<br>831<br>0.646         | 1.000<br>5.193<br>319<br>615<br>0.991<br>316<br>609<br>0.519         | 1.000<br>5.193<br>39<br>499<br>1.000<br>39<br>499<br>0.078        |

|                               | ٦           | $\mathbf{r}$ | 1               | t        | Ļ            | ∢                |      |  |
|-------------------------------|-------------|--------------|-----------------|----------|--------------|------------------|------|--|
| Movement                      | EBL         | EBR          | NBL             | NBT      | SBT          | SBR              |      |  |
| Lane Configurations           | Y           | LDK          | <u>الله الم</u> | <b>↑</b> | <u>الالا</u> | 301              |      |  |
| Traffic Volume (vph)          | 60          | 60           | 50              | 700      | 750          | 50               |      |  |
| Future Volume (vph)           | 60          | 60           | 50              | 700      | 750          | 50               |      |  |
| Ideal Flow (vphpl)            | 1900        | 1900         | 1900            | 1900     | 1900         | 1900             |      |  |
| Lane Width                    | 1700        | 1700         | 1700            | 1700     | 12           | 12               |      |  |
| Grade (%)                     | 2%          |              |                 | 0%       | 0%           | 12               |      |  |
| Total Lost time (s)           | 4.0         |              | 4.0             | 6.1      | 4.0          |                  |      |  |
| Lane Util. Factor             | 1.00        |              | 1.00            | 1.00     | 1.00         |                  |      |  |
| Frpb, ped/bikes               | 0.99        |              | 1.00            | 1.00     | 1.00         |                  |      |  |
| Flpb, ped/bikes               | 1.00        |              | 1.00            | 1.00     | 1.00         |                  |      |  |
| Frt                           | 0.93        |              | 1.00            | 1.00     | 0.99         |                  |      |  |
| Fit Protected                 | 0.98        |              | 0.95            | 1.00     | 1.00         |                  |      |  |
| Satd. Flow (prot)             | 1599        |              | 1728            | 1818     | 1863         |                  |      |  |
| Flt Permitted                 | 0.98        |              | 0.16            | 1.00     | 1.00         |                  |      |  |
| Satd. Flow (perm)             | 1599        |              | 293             | 1818     | 1863         |                  |      |  |
| Peak-hour factor, PHF         | 0.79        | 0.79         | 0.92            | 0.92     | 0.93         | 0.93             |      |  |
| Adj. Flow (vph)               | 76          | 76           | 0.92<br>54      | 761      | 806          | 54               |      |  |
| RTOR Reduction (vph)          | 45          | 0            | 0               | 0        | 3            | 0                |      |  |
| ane Group Flow (vph)          | 107         | 0            | 54              | 761      | 857          | 0                |      |  |
| Confl. Peds. (#/hr)           | 3           | 3            | 3               | 701      | 037          | 3                |      |  |
| eavy Vehicles (%)             | 2%          | 2%           | 1%              | 1%       | 1%           | 1%               |      |  |
| rn Type                       | Prot        | 270          | pm+pt           | NA       | NA           | 170              |      |  |
| rotected Phases               | 4           |              | рш+рс<br>5      | 2        | 6            |                  |      |  |
| ermitted Phases               | 4           |              | 2               | 2        | 0            |                  |      |  |
| ctuated Green, G (s)          | 7.0         |              | 43.1            | 43.1     | 37.4         |                  |      |  |
| ffective Green, g (s)         | 7.0         |              | 43.1            | 43.1     | 37.4         |                  |      |  |
| ctuated g/C Ratio             | 0.12        |              | 0.72            | 0.72     | 0.62         |                  |      |  |
| learance Time (s)             | 4.0         |              | 4.0             | 6.1      | 4.0          |                  |      |  |
| ehicle Extension (s)          | 1.5         |              | 1.5             | 3.0      | 1.5          |                  |      |  |
| ane Grp Cap (vph)             | 185         |              | 300             | 1301     | 1157         |                  |      |  |
| 's Ratio Prot                 | c0.07       |              | 0.01            | c0.42    | c0.46        |                  |      |  |
| 's Ratio Perm                 | 0.07        |              | 0.01            | CU.4Z    | 0.40         |                  |      |  |
| /c Ratio                      | 0.58        |              | 0.12            | 0.58     | 0.74         |                  |      |  |
| niform Delay, d1              | 25.2        |              | 6.5             | 4.2      | 8.0          |                  |      |  |
| Progression Factor            | 1.00        |              | 1.00            | 4.2      | 1.00         |                  |      |  |
| ncremental Delay, d2          | 2.7         |              | 0.1             | 0.7      | 2.3          |                  |      |  |
| elay (s)                      | 27.9        |              | 6.6             | 4.9      | 10.3         |                  |      |  |
| evel of Service               | C           |              | 0.0<br>A        | 4.7<br>A | B            |                  |      |  |
| Approach Delay (s)            | 27.9        |              |                 | 5.0      | 10.3         |                  |      |  |
| pproach LOS                   | C           |              |                 | A        | B            |                  |      |  |
| ntersection Summary           |             |              |                 |          |              |                  |      |  |
| HCM 2000 Control Delay        |             |              | 9.4             | H        | CM 2000      | Level of Service | A    |  |
| ICM 2000 Volume to Capa       | acity ratio |              | 0.72            | 11       | 511 2000     |                  | A    |  |
| Actuated Cycle Length (s)     |             |              | 60.2            | Si       | um of lost   | time (s)         | 12.0 |  |
| Intersection Capacity Utiliza | ation       |              | 57.3%           |          | U Level o    |                  | B    |  |
| Analysis Period (min)         |             |              | 15              | 10       |              |                  | 5    |  |
| c Critical Lane Group         |             |              |                 |          |              |                  |      |  |

Future (2042) Build Saturday Midday Peak

# Queues 22: Route 161 & Roxbury Rd

|                         | ≯    | •    | Ť    | ţ    |
|-------------------------|------|------|------|------|
| Lane Group              | EBL  | NBL  | NBT  | SBT  |
| Lane Group Flow (vph)   | 152  | 54   | 761  | 860  |
| v/c Ratio               | 0.55 | 0.14 | 0.57 | 0.69 |
| Control Delay           | 27.3 | 3.3  | 6.9  | 13.8 |
| Queue Delay             | 0.0  | 0.0  | 0.0  | 0.0  |
| Total Delay             | 27.3 | 3.3  | 6.9  | 13.8 |
| Queue Length 50th (ft)  | 30   | 4    | 108  | 216  |
| Queue Length 95th (ft)  | 94   | 13   | 235  | 497  |
| Internal Link Dist (ft) | 1120 |      | 476  | 697  |
| Turn Bay Length (ft)    |      | 150  |      |      |
| Base Capacity (vph)     | 427  | 396  | 1704 | 1646 |
| Starvation Cap Reductn  | 0    | 0    | 88   | 0    |
| Spillback Cap Reductn   | 0    | 0    | 0    | 0    |
| Storage Cap Reductn     | 0    | 0    | 0    | 0    |
| Reduced v/c Ratio       | 0.36 | 0.14 | 0.47 | 0.52 |
| Intersection Summary    |      |      |      |      |

|                              | ≯            | $\mathbf{r}$ | 1     | 1            | Ŧ         | 1               |   |      |  |
|------------------------------|--------------|--------------|-------|--------------|-----------|-----------------|---|------|--|
| Movement                     | EBL          | EBR          | NBL   | NBT          | SBT       | SBR             |   |      |  |
| Lane Configurations          | ¥            | LDI          |       |              | <u></u>   | <u> </u>        |   |      |  |
| Traffic Volume (vph)         | 110          | 90           | 60    | 700          | 720       | 130             |   |      |  |
| Future Volume (vph)          | 110          | 90<br>90     | 60    | 700          | 720       | 130             |   |      |  |
| Ideal Flow (vphpl)           | 1900         | 90<br>1900   | 1900  | 1900         | 1900      | 1900            |   |      |  |
| Lane Width                   | 1900         | 1900         | 1900  | 1900         | 1900      | 1900            |   |      |  |
| Grade (%)                    | 0%           | 11           | 11    | 0%           | 3%        | 14              |   |      |  |
| Total Lost time (s)          | 4.0          |              | 4.0   | 4.0          | 5.6       | 5.6             |   |      |  |
| Lane Util. Factor            | 1.00         |              | 4.0   | 4.0          | 1.00      | 1.00            |   |      |  |
|                              | 0.99         |              | 1.00  | 1.00         | 1.00      | 0.98            |   |      |  |
| Frpb, ped/bikes              |              |              |       | 1.00         |           | 1.00            |   |      |  |
| Flpb, ped/bikes<br>Frt       | 1.00         |              | 1.00  |              | 1.00      |                 |   |      |  |
|                              | 0.94<br>0.97 |              | 1.00  | 1.00<br>1.00 | 1.00      | 0.85            |   |      |  |
| Flt Protected                |              |              | 0.95  |              | 1.00      | 1.00            |   |      |  |
| Satd. Flow (prot)            | 1626         |              | 1727  | 1818         | 1977      | 1641            |   |      |  |
| Flt Permitted                | 0.97         |              | 0.12  | 1.00         | 1.00      | 1.00            |   |      |  |
| Satd. Flow (perm)            | 1626         | 0.7/         | 211   | 1818         | 1977      | 1641            |   |      |  |
| Peak-hour factor, PHF        | 0.76         | 0.76         | 0.86  | 0.86         | 0.91      | 0.91            |   |      |  |
| Adj. Flow (vph)              | 145          | 118          | 70    | 814          | 791       | 143             |   |      |  |
| RTOR Reduction (vph)         | 39           | 0            | 0     | 0            | 0         | 41              |   |      |  |
| Lane Group Flow (vph)        | 224          | 0            | 70    | 814          | 791       | 102             |   |      |  |
| Confl. Peds. (#/hr)          | 3            | 3            | 3     |              |           | 3               |   |      |  |
| Heavy Vehicles (%)           | 2%           | 2%           | 1%    | 1%           | 1%        | 1%              |   |      |  |
| Turn Type                    | Prot         |              | pm+pt | NA           | NA        | Perm            |   |      |  |
| Protected Phases             | 4            |              | 1     | 12           | 2         |                 |   |      |  |
| Permitted Phases             |              |              | 12    |              |           | 2               |   |      |  |
| Actuated Green, G (s)        | 15.6         |              | 46.6  | 50.6         | 34.5      | 34.5            |   |      |  |
| Effective Green, g (s)       | 15.6         |              | 46.6  | 50.6         | 34.5      | 34.5            |   |      |  |
| Actuated g/C Ratio           | 0.21         |              | 0.61  | 0.67         | 0.46      | 0.46            |   |      |  |
| Clearance Time (s)           | 4.0          |              | 4.0   |              | 5.6       | 5.6             |   |      |  |
| Vehicle Extension (s)        | 3.0          |              | 1.5   |              | 2.5       | 2.5             |   |      |  |
| Lane Grp Cap (vph)           | 334          |              | 371   | 1213         | 899       | 746             |   |      |  |
| v/s Ratio Prot               | c0.14        |              | 0.03  | c0.45        | c0.40     |                 |   |      |  |
| v/s Ratio Perm               |              |              | 0.09  |              |           | 0.06            |   |      |  |
| v/c Ratio                    | 0.67         |              | 0.19  | 0.67         | 0.88      | 0.14            |   |      |  |
| Uniform Delay, d1            | 27.7         |              | 11.0  | 7.6          | 18.8      | 12.0            |   |      |  |
| Progression Factor           | 1.00         |              | 1.00  | 1.00         | 1.00      | 1.00            |   |      |  |
| Incremental Delay, d2        | 5.2          |              | 0.1   | 1.2          | 9.8       | 0.1             |   |      |  |
| Delay (s)                    | 33.0         |              | 11.1  | 8.7          | 28.5      | 12.1            |   |      |  |
| Level of Service             | С            |              | В     | А            | С         | В               |   |      |  |
| Approach Delay (s)           | 33.0         |              |       | 8.9          | 26.0      |                 |   |      |  |
| Approach LOS                 | С            |              |       | А            | С         |                 |   |      |  |
| Intersection Summary         |              |              |       |              |           |                 |   |      |  |
| HCM 2000 Control Delay       |              |              | 19.6  | Н            | CM 2000   | Level of Servic | e | В    |  |
| HCM 2000 Volume to Capa      | acity ratio  |              | 0.80  |              |           |                 |   |      |  |
| Actuated Cycle Length (s)    | .,           |              | 75.8  | S            | um of los | t time (s)      |   | 13.6 |  |
| Intersection Capacity Utiliz | ation        |              | 65.3% |              |           | of Service      |   | C    |  |
| Analysis Period (min)        |              |              | 15    |              |           |                 |   |      |  |
| c Critical Lane Group        |              |              |       |              |           |                 |   |      |  |

Future (2042) Build Saturday Midday Peak

## Queues 19: Route 161 & Society Rd

|                         | ≯    | •    | Ť    | Ļ        | 1    |
|-------------------------|------|------|------|----------|------|
| Lane Group              | EBL  | NBL  | NBT  | •<br>SBT | SBR  |
|                         |      |      |      |          |      |
| Lane Group Flow (vph)   | 263  | 70   | 814  | 791      | 143  |
| v/c Ratio               | 0.71 | 0.19 | 0.65 | 0.88     | 0.18 |
| Control Delay           | 33.0 | 6.4  | 11.0 | 33.7     | 8.0  |
| Queue Delay             | 0.0  | 0.0  | 0.0  | 0.0      | 0.0  |
| Total Delay             | 33.0 | 6.4  | 11.0 | 33.7     | 8.0  |
| Queue Length 50th (ft)  | 93   | 9    | 181  | 323      | 17   |
| Queue Length 95th (ft)  | 131  | 27   | 365  | #639     | 57   |
| Internal Link Dist (ft) | 1539 |      | 3382 | 952      |      |
| Turn Bay Length (ft)    |      | 105  |      |          | 120  |
| Base Capacity (vph)     | 570  | 374  | 1250 | 899      | 787  |
| Starvation Cap Reductn  | 0    | 0    | 0    | 0        | 0    |
| Spillback Cap Reductn   | 0    | 0    | 0    | 0        | 0    |
| Storage Cap Reductn     | 0    | 0    | 0    | 0        | 0    |
| Reduced v/c Ratio       | 0.46 | 0.19 | 0.65 | 0.88     | 0.18 |
| Intersection Summary    |      |      |      |          |      |

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. #

|                              | 4     | •        | 1     | 1    | 1       | Ļ          |
|------------------------------|-------|----------|-------|------|---------|------------|
| Movement                     | WBL   | WBR      | NBT   | NBR  | SBL     | SBT        |
| Lane Configurations          | ۲     | 1        | 4Î    |      | 5       | <b>†</b>   |
| Traffic Volume (veh/h)       | 10    | 30       | 800   | 10   | 30      | 840        |
| Future Volume (Veh/h)        | 10    | 30       | 800   | 10   | 30      | 840        |
| Sign Control                 | Stop  |          | Free  |      |         | Free       |
| Grade                        | -3%   |          | 0%    |      |         | 0%         |
| Peak Hour Factor             | 0.89  | 0.89     | 0.89  | 0.89 | 0.95    | 0.95       |
| Hourly flow rate (vph)       | 11    | 34       | 899   | 11   | 32      | 884        |
| Pedestrians                  |       |          |       |      |         |            |
| Lane Width (ft)              |       |          |       |      |         |            |
| Walking Speed (ft/s)         |       |          |       |      |         |            |
| Percent Blockage             |       |          |       |      |         |            |
| Right turn flare (veh)       |       | 1        |       |      |         |            |
| Median type                  |       | •        | None  |      |         | None       |
| Median storage veh)          |       |          | NOTIC |      |         | NOTIC      |
| Upstream signal (ft)         |       |          | 1032  |      |         |            |
| pX, platoon unblocked        | 0.69  | 0.69     | 1032  |      | 0.69    |            |
| vC, conflicting volume       | 1852  | 904      |       |      | 910     |            |
| vC1, stage 1 conf vol        | 1002  | 904      |       |      | 910     |            |
| vC2, stage 2 conf vol        |       |          |       |      |         |            |
| vCu, unblocked vol           | 2011  | 637      |       |      | 645     |            |
|                              | 6.4   | 6.2      |       |      |         |            |
| tC, single (s)               | 0.4   | 0.2      |       |      | 4.1     |            |
| tC, 2 stage (s)              | 2 5   | <u> </u> |       |      | 2.2     |            |
| tF (s)                       | 3.5   | 3.3      |       |      | 2.2     |            |
| p0 queue free %              | 74    | 90       |       |      | 95      |            |
| cM capacity (veh/h)          | 43    | 329      |       |      | 652     |            |
| Direction, Lane #            | WB 1  | NB 1     | SB 1  | SB 2 |         |            |
| Volume Total                 | 45    | 910      | 32    | 884  |         |            |
| Volume Left                  | 11    | 0        | 32    | 0    |         |            |
| Volume Right                 | 34    | 11       | 0     | 0    |         |            |
| cSH                          | 174   | 1700     | 652   | 1700 |         |            |
| Volume to Capacity           | 0.26  | 0.54     | 0.05  | 0.52 |         |            |
| Queue Length 95th (ft)       | 25    | 0        | 4     | 0    |         |            |
| Control Delay (s)            | 41.5  | 0.0      | 10.8  | 0.0  |         |            |
| Lane LOS                     | Е     |          | В     |      |         |            |
| Approach Delay (s)           | 41.5  | 0.0      | 0.4   |      |         |            |
| Approach LOS                 | E     |          |       |      |         |            |
| Intersection Summary         |       |          |       |      |         |            |
| Average Delay                |       |          | 1.2   |      |         |            |
| Intersection Capacity Utiliz | ation |          | 54.2% | IC   |         | of Service |
| Analysis Period (min)        | allUH |          |       | iC   | o Level | UI SEIVICE |
| Analysis Period (min)        |       |          | 15    |      |         |            |

| HCM Signalized Intersection Capacity Analysis       |
|-----------------------------------------------------|
| 12: Route 161 & Industrial Park Rd/Chapman Woods Rd |

|                               | ≯          | -     | $\mathbf{F}$ | 4    | ł                | *          | •       | 1          | 1    | 1     | Ŧ          | ~    |
|-------------------------------|------------|-------|--------------|------|------------------|------------|---------|------------|------|-------|------------|------|
| Movement                      | EBL        | EBT   | EBR          | WBL  | WBT              | WBR        | NBL     | NBT        | NBR  | SBL   | SBT        | SBR  |
| Lane Configurations           | ካካ         | f,    |              |      | - <del>4</del> > |            | - ሽ     | <b>∱</b> ⊅ |      | - ሽ   | <b>≜</b> ⊅ |      |
| Traffic Volume (vph)          | 150        | 10    | 100          | 10   | 0                | 10         | 100     | 780        | 10   | 10    | 850        | 90   |
| Future Volume (vph)           | 150        | 10    | 100          | 10   | 0                | 10         | 100     | 780        | 10   | 10    | 850        | 90   |
| Ideal Flow (vphpl)            | 1900       | 1900  | 1900         | 1900 | 1900             | 1900       | 1900    | 1900       | 1900 | 1900  | 1900       | 1900 |
| Lane Width                    | 11         | 11    | 13           | 14   | 14               | 14         | 11      | 12         | 13   | 11    | 11         | 11   |
| Grade (%)                     |            | 2%    |              |      | -4%              |            |         | 0%         |      |       | 0%         |      |
| Total Lost time (s)           | 4.4        | 5.0   |              |      | 5.0              |            | 4.0     | 6.2        |      | 4.0   | 6.0        |      |
| Lane Util. Factor             | 0.97       | 1.00  |              |      | 1.00             |            | 1.00    | 0.95       |      | 1.00  | 0.95       |      |
| Frt                           | 1.00       | 0.86  |              |      | 0.93             |            | 1.00    | 1.00       |      | 1.00  | 0.99       |      |
| Flt Protected                 | 0.95       | 1.00  |              |      | 0.98             |            | 0.95    | 1.00       |      | 0.95  | 1.00       |      |
| Satd. Flow (prot)             | 3285       | 1540  |              |      | 1881             |            | 1711    | 3533       |      | 1711  | 3372       |      |
| Flt Permitted                 | 0.95       | 1.00  |              |      | 0.77             |            | 0.18    | 1.00       |      | 0.31  | 1.00       |      |
| Satd. Flow (perm)             | 3285       | 1540  |              |      | 1480             |            | 327     | 3533       |      | 562   | 3372       |      |
| Peak-hour factor, PHF         | 0.86       | 0.86  | 0.86         | 0.76 | 0.76             | 0.76       | 0.90    | 0.90       | 0.90 | 0.91  | 0.91       | 0.91 |
| Adj. Flow (vph)               | 174        | 12    | 116          | 13   | 0                | 13         | 111     | 867        | 11   | 11    | 934        | 99   |
| RTOR Reduction (vph)          | 0          | 105   | 0            | 0    | 23               | 0          | 0       | 1          | 0    | 0     | 8          | 0    |
| Lane Group Flow (vph)         | 174        | 23    | 0            | 0    | 3                | 0          | 111     | 877        | 0    | 11    | 1026       | 0    |
| Heavy Vehicles (%)            | 2%         | 2%    | 2%           | 0%   | 0%               | 0%         | 2%      | 2%         | 2%   | 2%    | 2%         | 2%   |
| Turn Type                     | Prot       | NA    |              | Perm | NA               |            | pm+pt   | NA         |      | pm+pt | NA         |      |
| Protected Phases              | 4          | 8     |              |      | 8                |            | 1       | 6          |      | 5     | 2          |      |
| Permitted Phases              |            | 8     |              | 8    |                  |            | 6       |            |      | 2     |            |      |
| Actuated Green, G (s)         | 5.6        | 7.4   |              |      | 7.4              |            | 46.4    | 41.4       |      | 38.5  | 37.5       |      |
| Effective Green, g (s)        | 5.6        | 7.4   |              |      | 7.4              |            | 46.4    | 41.4       |      | 38.5  | 37.5       |      |
| Actuated g/C Ratio            | 0.07       | 0.10  |              |      | 0.10             |            | 0.62    | 0.55       |      | 0.51  | 0.50       |      |
| Clearance Time (s)            | 4.4        | 5.0   |              |      | 5.0              |            | 4.0     | 6.2        |      | 4.0   | 6.0        |      |
| Vehicle Extension (s)         | 2.5        | 1.5   |              |      | 1.5              |            | 1.5     | 2.5        |      | 1.5   | 2.5        |      |
| Lane Grp Cap (vph)            | 245        | 151   |              |      | 146              |            | 296     | 1950       |      | 303   | 1686       |      |
| v/s Ratio Prot                | c0.05      | c0.02 |              |      |                  |            | c0.03   | 0.25       |      | 0.00  | c0.30      |      |
| v/s Ratio Perm                |            |       |              |      | 0.00             |            | 0.21    |            |      | 0.02  |            |      |
| v/c Ratio                     | 0.71       | 0.16  |              |      | 0.02             |            | 0.38    | 0.45       |      | 0.04  | 0.61       |      |
| Uniform Delay, d1             | 33.9       | 30.9  |              |      | 30.5             |            | 7.6     | 10.0       |      | 9.0   | 13.5       |      |
| Progression Factor            | 1.00       | 1.00  |              |      | 1.00             |            | 1.00    | 1.00       |      | 0.42  | 0.30       |      |
| Incremental Delay, d2         | 8.7        | 0.2   |              |      | 0.0              |            | 0.3     | 0.8        |      | 0.0   | 1.4        |      |
| Delay (s)                     | 42.6       | 31.1  |              |      | 30.5             |            | 7.9     | 10.8       |      | 3.7   | 5.5        |      |
| Level of Service              | D          | С     |              |      | С                |            | А       | В          |      | А     | А          |      |
| Approach Delay (s)            |            | 37.7  |              |      | 30.5             |            |         | 10.4       |      |       | 5.5        |      |
| Approach LOS                  |            | D     |              |      | С                |            |         | В          |      |       | А          |      |
| Intersection Summary          |            |       |              |      |                  |            |         |            |      |       |            |      |
| HCM 2000 Control Delay        |            |       | 12.0         | H    | CM 2000          | Level of   | Service |            | В    |       |            |      |
| HCM 2000 Volume to Capa       | city ratio |       | 0.54         |      |                  |            |         |            |      |       |            |      |
| Actuated Cycle Length (s)     |            |       |              | S    | um of los        | t time (s) |         |            | 19.6 |       |            |      |
| Intersection Capacity Utiliza | ation      |       | 52.2%        |      | U Level          |            |         |            | А    |       |            |      |
| Analysis Period (min)         |            |       | 15           |      |                  |            |         |            |      |       |            |      |
| c Critical Lane Group         |            |       |              |      |                  |            |         |            |      |       |            |      |

| Queues                                              |  |
|-----------------------------------------------------|--|
| 12: Route 161 & Industrial Park Rd/Chapman Woods Rd |  |

|                         | ≯    | -    | ←    | 1    | 1    | 1    | Ŧ    |  |
|-------------------------|------|------|------|------|------|------|------|--|
| Lane Group              | EBL  | EBT  | WBT  | NBL  | NBT  | SBL  | SBT  |  |
| Lane Group Flow (vph)   | 174  | 128  | 26   | 111  | 878  | 11   | 1033 |  |
| v/c Ratio               | 0.71 | 0.44 | 0.08 | 0.34 | 0.41 | 0.03 | 0.58 |  |
| Control Delay           | 51.5 | 13.2 | 0.5  | 8.5  | 9.8  | 2.5  | 5.6  |  |
| Queue Delay             | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |  |
| Total Delay             | 51.5 | 13.2 | 0.5  | 8.5  | 9.8  | 2.5  | 5.6  |  |
| Queue Length 50th (ft)  | 41   | 5    | 0    | 18   | 103  | 0    | 39   |  |
| Queue Length 95th (ft)  | #79  | 46   | 0    | 38   | 196  | m1   | 67   |  |
| Internal Link Dist (ft) |      | 619  | 594  |      | 240  |      | 743  |  |
| Turn Bay Length (ft)    | 150  |      |      | 200  |      | 100  |      |  |
| Base Capacity (vph)     | 245  | 590  | 606  | 329  | 2149 | 415  | 1773 |  |
| Starvation Cap Reductn  | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Spillback Cap Reductn   | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Storage Cap Reductn     | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Reduced v/c Ratio       | 0.71 | 0.22 | 0.04 | 0.34 | 0.41 | 0.03 | 0.58 |  |
|                         |      |      |      |      |      |      |      |  |

#### Intersection Summary

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. #

m Volume for 95th percentile queue is metered by upstream signal.

# HCM Signalized Intersection Capacity Analysis 40: Route 161 & I-95 NB Exit Ramp/Burger King Driveway

06/01/2023

|                              | ٦           | -    | $\mathbf{F}$ | *     | ł         | *          | •       | 1           | 1    | 1     | Ŧ       | ~    |
|------------------------------|-------------|------|--------------|-------|-----------|------------|---------|-------------|------|-------|---------|------|
| Movement                     | EBL         | EBT  | EBR          | WBL   | WBT       | WBR        | NBL     | NBT         | NBR  | SBL   | SBT     | SBR  |
| Lane Configurations          | ሻሻ          | ¢Î   |              | ľ     |           | 1          |         | <b>↑</b> î≽ |      | ٦     | <u></u> |      |
| Traffic Volume (vph)         | 240         | 20   | 60           | 30    | 0         | 60         | 0       | 980         | 20   | 50    | 980     | 0    |
| Future Volume (vph)          | 240         | 20   | 60           | 30    | 0         | 60         | 0       | 980         | 20   | 50    | 980     | 0    |
| Ideal Flow (vphpl)           | 1900        | 1900 | 1900         | 1900  | 1900      | 1900       | 1900    | 1900        | 1900 | 1900  | 1900    | 1900 |
| Total Lost time (s)          | 5.4         | 5.4  |              | 4.0   |           | 4.0        |         | 7.0         |      | 4.5   | 7.0     |      |
| Lane Util. Factor            | 0.97        | 1.00 |              | 1.00  |           | 1.00       |         | 0.95        |      | 1.00  | 0.95    |      |
| Frt                          | 1.00        | 0.89 |              | 1.00  |           | 0.85       |         | 1.00        |      | 1.00  | 1.00    |      |
| Flt Protected                | 0.95        | 1.00 |              | 0.95  |           | 1.00       |         | 1.00        |      | 0.95  | 1.00    |      |
| Satd. Flow (prot)            | 3433        | 1654 |              | 1770  |           | 1583       |         | 3528        |      | 1770  | 3539    |      |
| Flt Permitted                | 0.95        | 1.00 |              | 0.95  |           | 1.00       |         | 1.00        |      | 0.14  | 1.00    |      |
| Satd. Flow (perm)            | 3433        | 1654 |              | 1770  |           | 1583       |         | 3528        |      | 269   | 3539    |      |
| Peak-hour factor, PHF        | 0.92        | 0.92 | 0.92         | 0.92  | 0.92      | 0.92       | 0.92    | 0.92        | 0.92 | 0.92  | 0.92    | 0.92 |
| Adj. Flow (vph)              | 261         | 22   | 65           | 33    | 0         | 65         | 0       | 1065        | 22   | 54    | 1065    | 0    |
| RTOR Reduction (vph)         | 0           | 55   | 0            | 0     | 0         | 60         | 0       | 2           | 0    | 0     | 0       | 0    |
| Lane Group Flow (vph)        | 261         | 32   | 0            | 33    | 0         | 5          | 0       | 1085        | 0    | 54    | 1065    | 0    |
| Turn Type                    | Split       | NA   |              | Prot  |           | Perm       |         | NA          |      | pm+pt | NA      |      |
| Protected Phases             | 4           | 4    |              | 8     |           |            |         | 6           |      | 5     | 2       |      |
| Permitted Phases             |             |      |              |       |           | 8          |         |             |      | 2     |         |      |
| Actuated Green, G (s)        | 11.2        | 11.2 |              | 5.8   |           | 5.8        |         | 33.2        |      | 41.6  | 41.6    |      |
| Effective Green, g (s)       | 11.2        | 11.2 |              | 5.8   |           | 5.8        |         | 33.2        |      | 41.6  | 41.6    |      |
| Actuated g/C Ratio           | 0.15        | 0.15 |              | 0.08  |           | 0.08       |         | 0.44        |      | 0.55  | 0.55    |      |
| Clearance Time (s)           | 5.4         | 5.4  |              | 4.0   |           | 4.0        |         | 7.0         |      | 4.5   | 7.0     |      |
| Vehicle Extension (s)        | 3.0         | 3.0  |              | 3.0   |           | 3.0        |         | 3.0         |      | 3.0   | 3.0     |      |
| Lane Grp Cap (vph)           | 512         | 246  |              | 136   |           | 122        |         | 1561        |      | 227   | 1962    |      |
| v/s Ratio Prot               | c0.08       | 0.02 |              | c0.02 |           |            |         | c0.31       |      | 0.01  | c0.30   |      |
| v/s Ratio Perm               |             |      |              |       |           | 0.00       |         |             |      | 0.12  |         |      |
| v/c Ratio                    | 0.51        | 0.13 |              | 0.24  |           | 0.04       |         | 0.70        |      | 0.24  | 0.54    |      |
| Uniform Delay, d1            | 29.4        | 27.7 |              | 32.5  |           | 32.0       |         | 16.8        |      | 9.8   | 10.6    |      |
| Progression Factor           | 1.00        | 1.00 |              | 1.00  |           | 1.00       |         | 0.76        |      | 0.47  | 0.38    |      |
| Incremental Delay, d2        | 0.8         | 0.2  |              | 0.9   |           | 0.1        |         | 1.2         |      | 0.5   | 1.0     |      |
| Delay (s)                    | 30.2        | 27.9 |              | 33.5  |           | 32.2       |         | 14.0        |      | 5.1   | 5.0     |      |
| Level of Service             | С           | С    |              | С     |           | С          |         | В           |      | А     | А       |      |
| Approach Delay (s)           |             | 29.6 |              |       | 32.6      |            |         | 14.0        |      |       | 5.0     |      |
| Approach LOS                 |             | С    |              |       | С         |            |         | В           |      |       | А       |      |
| Intersection Summary         |             |      |              |       |           |            |         |             |      |       |         |      |
| HCM 2000 Control Delay       |             |      | 13.0         | Н     | CM 2000   | Level of   | Service |             | В    |       |         |      |
| HCM 2000 Volume to Capa      | acity ratio |      | 0.62         |       |           |            |         |             |      |       |         |      |
| Actuated Cycle Length (s)    |             |      | 75.0         |       | um of los |            |         |             | 20.9 |       |         |      |
| Intersection Capacity Utiliz | ation       |      | 59.5%        | IC    | U Level   | of Service | ;       |             | В    |       |         |      |
| Analysis Period (min)        |             |      | 15           |       |           |            |         |             |      |       |         |      |
| c Critical Lane Group        |             |      |              |       |           |            |         |             |      |       |         |      |

c Critical Lane Group

| Queues                                                 |
|--------------------------------------------------------|
| 40: Route 161 & I-95 NB Exit Ramp/Burger King Driveway |

06/01/2023

|                         | ≯    | -    | 4    | •    | 1    | 1    | Ŧ    |  |
|-------------------------|------|------|------|------|------|------|------|--|
| Lane Group              | EBL  | EBT  | WBL  | WBR  | NBT  | SBL  | SBT  |  |
| Lane Group Flow (vph)   | 261  | 87   | 33   | 65   | 1087 | 54   | 1065 |  |
| v/c Ratio               | 0.51 | 0.29 | 0.20 | 0.20 | 0.64 | 0.19 | 0.53 |  |
| Control Delay           | 32.7 | 13.7 | 33.8 | 1.3  | 16.5 | 5.2  | 5.4  |  |
| Queue Delay             | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |  |
| Total Delay             | 32.7 | 13.7 | 33.8 | 1.3  | 16.5 | 5.2  | 5.4  |  |
| Queue Length 50th (ft)  | 58   | 9    | 15   | 0    | 114  | 4    | 43   |  |
| Queue Length 95th (ft)  | 89   | 45   | 39   | 0    | #346 | m12  | 92   |  |
| Internal Link Dist (ft) |      | 426  |      |      | 743  |      | 431  |  |
| Turn Bay Length (ft)    | 250  |      |      |      |      | 240  |      |  |
| Base Capacity (vph)     | 823  | 446  | 164  | 330  | 1686 | 283  | 1999 |  |
| Starvation Cap Reductn  | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Spillback Cap Reductn   | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Storage Cap Reductn     | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Reduced v/c Ratio       | 0.32 | 0.20 | 0.20 | 0.20 | 0.64 | 0.19 | 0.53 |  |
|                         |      |      |      |      |      |      |      |  |

#### Intersection Summary

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. #

m Volume for 95th percentile queue is metered by upstream signal.

# HCM Signalized Intersection Capacity Analysis 10: Route 161 & Park and Ride Lot/King Arthur Dr

|                                  | ≯       | +    | *     | 4    | ł              | *           | <        | 1           | 1    | 1        | Ŧ           | ~    |
|----------------------------------|---------|------|-------|------|----------------|-------------|----------|-------------|------|----------|-------------|------|
| Movement                         | EBL     | EBT  | EBR   | WBL  | WBT            | WBR         | NBL      | NBT         | NBR  | SBL      | SBT         | SBR  |
| Lane Configurations              |         | 4    |       |      | <del>ન</del> ી | 1           | <u> </u> | <u></u> ↑↑₽ |      | <u> </u> | - <b>††</b> |      |
| Traffic Volume (vph)             | 0       | 0    | 0     | 100  | 0              | 60          | 0        | 1210        | 70   | 70       | 1110        | 0    |
| Future Volume (vph)              | 0       | 0    | 0     | 100  | 0              | 60          | 0        | 1210        | 70   | 70       | 1110        | 0    |
| Ideal Flow (vphpl)               | 1900    | 1900 | 1900  | 1900 | 1900           | 1900        | 1900     | 1900        | 1900 | 1900     | 1900        | 1900 |
| Lane Width                       | 12      | 12   | 12    | 11   | 12             | 12          | 12       | 12          | 8    | 11       | 11          | 11   |
| Total Lost time (s)              |         |      |       |      | 4.2            | 4.0         |          | 6.6         |      | 4.0      | 6.1         |      |
| Lane Util. Factor                |         |      |       |      | 1.00           | 1.00        |          | 0.91        |      | 1.00     | 0.95        |      |
| Frpb, ped/bikes                  |         |      |       |      | 1.00           | 0.99        |          | 1.00        |      | 1.00     | 1.00        |      |
| Flpb, ped/bikes                  |         |      |       |      | 0.99           | 1.00        |          | 1.00        |      | 1.00     | 1.00        |      |
| Frt                              |         |      |       |      | 1.00           | 0.85        |          | 0.99        |      | 1.00     | 1.00        |      |
| Flt Protected                    |         |      |       |      | 0.95           | 1.00        |          | 1.00        |      | 0.95     | 1.00        |      |
| Satd. Flow (prot)                |         |      |       |      | 1742           | 1549        |          | 5037        |      | 1711     | 3421        |      |
| Flt Permitted                    |         |      |       |      | 0.76           | 1.00        |          | 1.00        |      | 0.15     | 1.00        |      |
| Satd. Flow (perm)                |         |      |       |      | 1388           | 1549        |          | 5037        |      | 265      | 3421        |      |
| Peak-hour factor, PHF            | 0.92    | 0.92 | 0.92  | 0.91 | 0.91           | 0.91        | 0.96     | 0.96        | 0.96 | 0.98     | 0.98        | 0.98 |
| Adj. Flow (vph)                  | 0       | 0    | 0     | 110  | 0              | 66          | 0        | 1260        | 73   | 71       | 1133        | 0    |
| RTOR Reduction (vph)             | 0       | 0    | 0     | 0    | 0              | 38          | 0        | 0           | 0    | 0        | 0           | 0    |
| Lane Group Flow (vph)            | 0       | 0    | 0     | 0    | 110            | 28          | 0        | 1333        | 0    | 71       | 1133        | 0    |
| Confl. Peds. (#/hr)              | 4       |      | 4     | 4    |                | 4           | 4        |             | 4    | 4        |             | 4    |
| Heavy Vehicles (%)               | 3%      | 3%   | 3%    | 3%   | 3%             | 3%          | 2%       | 2%          | 2%   | 2%       | 2%          | 2%   |
| Turn Type                        |         |      |       | Perm | NA             | pm+ov       | pm+pt    | NA          |      | pm+pt    | NA          |      |
| Protected Phases                 |         | 4    |       |      | 8              | 1           | 5        | 2           |      | 1        | 6           |      |
| Permitted Phases                 | 4       | 4    |       | 8    |                | 8           | 2        |             |      | 6        |             |      |
| Actuated Green, G (s)            |         |      |       |      | 15.0           | 20.6        |          | 39.6        |      | 49.7     | 49.7        |      |
| Effective Green, g (s)           |         |      |       |      | 15.0           | 20.6        |          | 39.6        |      | 49.7     | 49.7        |      |
| Actuated g/C Ratio               |         |      |       |      | 0.20           | 0.27        |          | 0.53        |      | 0.66     | 0.66        |      |
| Clearance Time (s)               |         |      |       |      | 4.2            | 4.0         |          | 6.6         |      | 4.0      | 6.1         |      |
| Vehicle Extension (s)            |         |      |       |      | 1.5            | 2.5         |          | 2.5         |      | 2.5      | 2.5         |      |
| Lane Grp Cap (vph)               |         |      |       |      | 277            | 425         |          | 2659        |      | 283      | 2266        |      |
| v/s Ratio Prot                   |         |      |       |      |                | 0.00        |          | 0.26        |      | 0.02     | c0.33       |      |
| v/s Ratio Perm                   |         |      |       |      | c0.08          | 0.01        |          |             |      | 0.15     |             |      |
| v/c Ratio                        |         |      |       |      | 0.40           | 0.07        |          | 0.50        |      | 0.25     | 0.50        |      |
| Uniform Delay, d1                |         |      |       |      | 26.1           | 20.1        |          | 11.4        |      | 5.4      | 6.4         |      |
| Progression Factor               |         |      |       |      | 1.00           | 1.00        |          | 0.55        |      | 0.62     | 0.48        |      |
| Incremental Delay, d2            |         |      |       |      | 0.3            | 0.0         |          | 0.6         |      | 0.3      | 0.1         |      |
| Delay (s)                        |         |      |       |      | 26.4           | 20.1        |          | 6.8         |      | 3.7      | 3.2         |      |
| Level of Service                 |         |      |       |      | С              | С           |          | A           |      | A        | A           |      |
| Approach Delay (s)               |         | 0.0  |       |      | 24.1           | -           |          | 6.8         |      |          | 3.2         |      |
| Approach LOS                     |         | A    |       |      | С              |             |          | A           |      |          | A           |      |
| Intersection Summary             |         |      |       |      |                |             |          |             |      |          |             |      |
| HCM 2000 Control Delay           |         |      | 6.3   | H    | CM 2000        | ) Level of  | Service  |             | А    |          |             |      |
| HCM 2000 Volume to Capacity      | y ratio |      | 0.51  |      |                |             |          |             |      |          |             |      |
| Actuated Cycle Length (s)        |         |      | 75.0  | S    | um of los      | st time (s) |          |             | 14.8 |          |             |      |
| Intersection Capacity Utilizatio | n       |      | 59.3% |      |                | of Servic   |          |             | В    |          |             |      |
| Analysis Period (min)            |         |      | 15    |      |                |             |          |             |      |          |             |      |
| c Critical Lane Group            |         |      |       |      |                |             |          |             |      |          |             |      |

|                         | -    | •    | 1    | ×    | .↓   |
|-------------------------|------|------|------|------|------|
| Lane Group              | WBT  | WBR  | NBT  | SBL  | SBT  |
| Lane Group Flow (vph)   | 110  | 66   | 1333 | 71   | 1133 |
| v/c Ratio               | 0.40 | 0.13 | 0.49 | 0.22 | 0.50 |
| Control Delay           | 31.1 | 7.7  | 6.9  | 3.9  | 3.9  |
| Queue Delay             | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| Total Delay             | 31.1 | 7.7  | 6.9  | 3.9  | 3.9  |
| Queue Length 50th (ft)  | 45   | 4    | 68   | 4    | 46   |
| Queue Length 95th (ft)  | 91   | 29   | 63   | 9    | 58   |
| Internal Link Dist (ft) | 603  |      | 431  |      | 69   |
| Turn Bay Length (ft)    |      | 110  |      |      |      |
| Base Capacity (vph)     | 329  | 496  | 2711 | 318  | 2266 |
| Starvation Cap Reductn  | 0    | 0    | 0    | 0    | 0    |
| Spillback Cap Reductn   | 0    | 0    | 0    | 0    | 0    |
| Storage Cap Reductn     | 0    | 0    | 0    | 0    | 0    |
| Reduced v/c Ratio       | 0.33 | 0.13 | 0.49 | 0.22 | 0.50 |
| Intersection Summary    |      |      |      |      |      |

# HCM Signalized Intersection Capacity Analysis 10: Route 161 & Park and Ride Lot/King Arthur Dr

|                                  | ≯       | +    | *     | 4    | ł              | *           | <        | 1           | 1    | 1        | Ŧ           | ~    |
|----------------------------------|---------|------|-------|------|----------------|-------------|----------|-------------|------|----------|-------------|------|
| Movement                         | EBL     | EBT  | EBR   | WBL  | WBT            | WBR         | NBL      | NBT         | NBR  | SBL      | SBT         | SBR  |
| Lane Configurations              |         | 4    |       |      | <del>ન</del> ી | 1           | <u> </u> | <u></u> ↑↑₽ |      | <u> </u> | - <b>††</b> |      |
| Traffic Volume (vph)             | 0       | 0    | 0     | 100  | 0              | 60          | 0        | 1210        | 70   | 70       | 1110        | 0    |
| Future Volume (vph)              | 0       | 0    | 0     | 100  | 0              | 60          | 0        | 1210        | 70   | 70       | 1110        | 0    |
| Ideal Flow (vphpl)               | 1900    | 1900 | 1900  | 1900 | 1900           | 1900        | 1900     | 1900        | 1900 | 1900     | 1900        | 1900 |
| Lane Width                       | 12      | 12   | 12    | 11   | 12             | 12          | 12       | 12          | 8    | 11       | 11          | 11   |
| Total Lost time (s)              |         |      |       |      | 4.2            | 4.0         |          | 6.6         |      | 4.0      | 6.1         |      |
| Lane Util. Factor                |         |      |       |      | 1.00           | 1.00        |          | 0.91        |      | 1.00     | 0.95        |      |
| Frpb, ped/bikes                  |         |      |       |      | 1.00           | 0.99        |          | 1.00        |      | 1.00     | 1.00        |      |
| Flpb, ped/bikes                  |         |      |       |      | 0.99           | 1.00        |          | 1.00        |      | 1.00     | 1.00        |      |
| Frt                              |         |      |       |      | 1.00           | 0.85        |          | 0.99        |      | 1.00     | 1.00        |      |
| Flt Protected                    |         |      |       |      | 0.95           | 1.00        |          | 1.00        |      | 0.95     | 1.00        |      |
| Satd. Flow (prot)                |         |      |       |      | 1742           | 1549        |          | 5037        |      | 1711     | 3421        |      |
| Flt Permitted                    |         |      |       |      | 0.76           | 1.00        |          | 1.00        |      | 0.15     | 1.00        |      |
| Satd. Flow (perm)                |         |      |       |      | 1388           | 1549        |          | 5037        |      | 265      | 3421        |      |
| Peak-hour factor, PHF            | 0.92    | 0.92 | 0.92  | 0.91 | 0.91           | 0.91        | 0.96     | 0.96        | 0.96 | 0.98     | 0.98        | 0.98 |
| Adj. Flow (vph)                  | 0       | 0    | 0     | 110  | 0              | 66          | 0        | 1260        | 73   | 71       | 1133        | 0    |
| RTOR Reduction (vph)             | 0       | 0    | 0     | 0    | 0              | 38          | 0        | 0           | 0    | 0        | 0           | 0    |
| Lane Group Flow (vph)            | 0       | 0    | 0     | 0    | 110            | 28          | 0        | 1333        | 0    | 71       | 1133        | 0    |
| Confl. Peds. (#/hr)              | 4       |      | 4     | 4    |                | 4           | 4        |             | 4    | 4        |             | 4    |
| Heavy Vehicles (%)               | 3%      | 3%   | 3%    | 3%   | 3%             | 3%          | 2%       | 2%          | 2%   | 2%       | 2%          | 2%   |
| Turn Type                        |         |      |       | Perm | NA             | pm+ov       | pm+pt    | NA          |      | pm+pt    | NA          |      |
| Protected Phases                 |         | 4    |       |      | 8              | 1           | 5        | 2           |      | 1        | 6           |      |
| Permitted Phases                 | 4       | 4    |       | 8    |                | 8           | 2        |             |      | 6        |             |      |
| Actuated Green, G (s)            |         |      |       |      | 15.0           | 20.6        |          | 39.6        |      | 49.7     | 49.7        |      |
| Effective Green, g (s)           |         |      |       |      | 15.0           | 20.6        |          | 39.6        |      | 49.7     | 49.7        |      |
| Actuated g/C Ratio               |         |      |       |      | 0.20           | 0.27        |          | 0.53        |      | 0.66     | 0.66        |      |
| Clearance Time (s)               |         |      |       |      | 4.2            | 4.0         |          | 6.6         |      | 4.0      | 6.1         |      |
| Vehicle Extension (s)            |         |      |       |      | 1.5            | 2.5         |          | 2.5         |      | 2.5      | 2.5         |      |
| Lane Grp Cap (vph)               |         |      |       |      | 277            | 425         |          | 2659        |      | 283      | 2266        |      |
| v/s Ratio Prot                   |         |      |       |      |                | 0.00        |          | 0.26        |      | 0.02     | c0.33       |      |
| v/s Ratio Perm                   |         |      |       |      | c0.08          | 0.01        |          |             |      | 0.15     |             |      |
| v/c Ratio                        |         |      |       |      | 0.40           | 0.07        |          | 0.50        |      | 0.25     | 0.50        |      |
| Uniform Delay, d1                |         |      |       |      | 26.1           | 20.1        |          | 11.4        |      | 5.4      | 6.4         |      |
| Progression Factor               |         |      |       |      | 1.00           | 1.00        |          | 0.55        |      | 0.62     | 0.48        |      |
| Incremental Delay, d2            |         |      |       |      | 0.3            | 0.0         |          | 0.6         |      | 0.3      | 0.1         |      |
| Delay (s)                        |         |      |       |      | 26.4           | 20.1        |          | 6.8         |      | 3.7      | 3.2         |      |
| Level of Service                 |         |      |       |      | С              | С           |          | A           |      | A        | A           |      |
| Approach Delay (s)               |         | 0.0  |       |      | 24.1           | -           |          | 6.8         |      |          | 3.2         |      |
| Approach LOS                     |         | A    |       |      | С              |             |          | A           |      |          | A           |      |
| Intersection Summary             |         |      |       |      |                |             |          |             |      |          |             |      |
| HCM 2000 Control Delay           |         |      | 6.3   | H    | CM 2000        | ) Level of  | Service  |             | А    |          |             |      |
| HCM 2000 Volume to Capacity      | y ratio |      | 0.51  |      |                |             |          |             |      |          |             |      |
| Actuated Cycle Length (s)        |         |      | 75.0  | S    | um of los      | st time (s) |          |             | 14.8 |          |             |      |
| Intersection Capacity Utilizatio | n       |      | 59.3% |      |                | of Servic   |          |             | В    |          |             |      |
| Analysis Period (min)            |         |      | 15    |      |                |             |          |             |      |          |             |      |
| c Critical Lane Group            |         |      |       |      |                |             |          |             |      |          |             |      |

|                         | -    | •    | 1    | ×    | . ↓  |
|-------------------------|------|------|------|------|------|
| Lane Group              | WBT  | WBR  | NBT  | SBL  | SBT  |
| Lane Group Flow (vph)   | 110  | 66   | 1333 | 71   | 1133 |
| v/c Ratio               | 0.40 | 0.13 | 0.49 | 0.22 | 0.50 |
| Control Delay           | 31.1 | 7.7  | 6.9  | 3.9  | 3.9  |
| Queue Delay             | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| Total Delay             | 31.1 | 7.7  | 6.9  | 3.9  | 3.9  |
| Queue Length 50th (ft)  | 45   | 4    | 68   | 4    | 46   |
| Queue Length 95th (ft)  | 91   | 29   | 63   | 9    | 58   |
| Internal Link Dist (ft) | 603  |      | 431  |      | 69   |
| Turn Bay Length (ft)    |      | 110  |      |      |      |
| Base Capacity (vph)     | 329  | 496  | 2711 | 318  | 2266 |
| Starvation Cap Reductn  | 0    | 0    | 0    | 0    | 0    |
| Spillback Cap Reductn   | 0    | 0    | 0    | 0    | 0    |
| Storage Cap Reductn     | 0    | 0    | 0    | 0    | 0    |
| Reduced v/c Ratio       | 0.33 | 0.13 | 0.49 | 0.22 | 0.50 |
| Intersection Summary    |      |      |      |      |      |

HCM Signalized Intersection Capacity Analysis 8: Route 161 & Frontage Road to I-95 SB Ramps/Daddy's Noodles Driveway

|                               | ۶           | -    | $\mathbf{i}$ | •    | -         | *          | 1         | 1           | 1    | 1     | ţ          | ~        |
|-------------------------------|-------------|------|--------------|------|-----------|------------|-----------|-------------|------|-------|------------|----------|
| Movement                      | EBL         | EBT  | EBR          | WBL  | WBT       | WBR        | NBL       | NBT         | NBR  | SBL   | SBT        | SBR      |
| Lane Configurations           | 5           |      | 11           |      | र्भ       | 1          | ኘኘ        | <b>∱1</b> ≱ |      | 1     | <b>†</b> † | 1        |
| Traffic Volume (vph)          | 130         | 0    | 530          | 0    | 0         | 0          | 250       | 570         | 0    | 0     | 650        | 280      |
| Future Volume (vph)           | 130         | 0    | 530          | 0    | 0         | 0          | 250       | 570         | 0    | 0     | 650        | 280      |
| Ideal Flow (vphpl)            | 1900        | 1900 | 1900         | 1900 | 1900      | 1900       | 1900      | 1900        | 1900 | 1900  | 1900       | 1900     |
| Lane Width                    | 11          | 12   | 12           | 12   | 12        | 12         | 12        | 12          | 12   | 12    | 12         | 12       |
| Total Lost time (s)           | 5.9         |      | 5.9          |      |           |            | 4.0       | 5.5         |      |       | 7.0        | 5.9      |
| Lane Util. Factor             | 1.00        |      | 0.88         |      |           |            | 0.97      | 0.95        |      |       | 0.95       | 1.00     |
| Frpb, ped/bikes               | 1.00        |      | 1.00         |      |           |            | 1.00      | 1.00        |      |       | 1.00       | 0.99     |
| Flpb, ped/bikes               | 1.00        |      | 1.00         |      |           |            | 1.00      | 1.00        |      |       | 1.00       | 1.00     |
| Frt                           | 1.00        |      | 0.85         |      |           |            | 1.00      | 1.00        |      |       | 1.00       | 0.85     |
| Flt Protected                 | 0.95        |      | 1.00         |      |           |            | 0.95      | 1.00        |      |       | 1.00       | 1.00     |
| Satd. Flow (prot)             | 1728        |      | 2814         |      |           |            | 3433      | 3539        |      |       | 3539       | 1568     |
| Flt Permitted                 | 0.95        |      | 1.00         |      |           |            | 0.95      | 1.00        |      |       | 1.00       | 1.00     |
| Satd. Flow (perm)             | 1728        |      | 2814         |      |           |            | 3433      | 3539        |      |       | 3539       | 1568     |
| Peak-hour factor, PHF         | 0.95        | 0.92 | 0.95         | 0.92 | 0.92      | 0.92       | 0.96      | 0.96        | 0.92 | 0.92  | 0.93       | 0.93     |
| Adj. Flow (vph)               | 137         | 0    | 558          | 0    | 0         | 0          | 260       | 594         | 0    | 0     | 699        | 301      |
| RTOR Reduction (vph)          | 0           | 0    | 336          | 0    | 0         | 0          | 0         | 0           | 0    | 0     | 0          | 113      |
| Lane Group Flow (vph)         | 137         | 0    | 222          | 0    | 0         | 0          | 260       | 594         | 0    | 0     | 699        | 188      |
| Confl. Peds. (#/hr)           | 3           | •    | 3            | 3    | Ū         | 3          | 3         | 071         | 3    | 3     | 0,,,       | 3        |
| Heavy Vehicles (%)            | 1%          | 2%   | 1%           | 2%   | 2%        | 2%         | 2%        | 2%          | 2%   | 2%    | 2%         | 2%       |
| Turn Type                     | Prot        | 270  | pt+ov        | 270  | 270       | Prot       | Prot      | NA          | 270  | pm+pt | NA         | pm+ov    |
| Protected Phases              | 8           |      | 81           | 4    | 4         | 4          | 1         | 6           |      | 5     | 2          | 8        |
| Permitted Phases              | 0           |      | 01           | Т    | Т         | т          |           | U           |      | 2     | 2          | 2        |
| Actuated Green, G (s)         | 12.6        |      | 29.8         |      |           |            | 11.3      | 51.0        |      | 2     | 34.2       | 46.8     |
| Effective Green, g (s)        | 12.6        |      | 29.8         |      |           |            | 11.3      | 51.0        |      |       | 34.2       | 46.8     |
| Actuated g/C Ratio            | 0.17        |      | 0.40         |      |           |            | 0.15      | 0.68        |      |       | 0.46       | 0.62     |
| Clearance Time (s)            | 5.9         |      | 0.10         |      |           |            | 4.0       | 5.5         |      |       | 7.0        | 5.9      |
| Vehicle Extension (s)         | 2.5         |      |              |      |           |            | 2.5       | 2.5         |      |       | 2.5        | 2.5      |
| Lane Grp Cap (vph)            | 290         |      | 1118         |      |           |            | 517       | 2406        |      |       | 1613       | 978      |
| v/s Ratio Prot                | c0.08       |      | 0.08         |      |           |            | c0.08     | 0.17        |      |       | c0.20      | 0.03     |
| v/s Ratio Perm                | 0.00        |      | 0.00         |      |           |            | CU.UU     | 0.17        |      |       | 0.20       | 0.03     |
| v/c Ratio                     | 0.47        |      | 0.20         |      |           |            | 0.50      | 0.25        |      |       | 0.43       | 0.09     |
| Uniform Delay, d1             | 28.2        |      | 14.8         |      |           |            | 29.3      | 4.6         |      |       | 13.8       | 6.0      |
| Progression Factor            | 1.00        |      | 1.00         |      |           |            | 0.71      | 1.18        |      |       | 1.00       | 1.00     |
| Incremental Delay, d2         | 0.9         |      | 0.1          |      |           |            | 0.71      | 0.0         |      |       | 0.9        | 0.1      |
| Delay (s)                     | 29.1        |      | 14.8         |      |           |            | 21.4      | 5.5         |      |       | 14.7       | 6.1      |
| Level of Service              | 27.1<br>C   |      | 14.0<br>B    |      |           |            | 21.4<br>C | э.э<br>А    |      |       | 14.7<br>B  | 0.1<br>A |
| Approach Delay (s)            | C           | 17.7 | D            |      | 0.0       |            | C         | 10.3        |      |       | 12.1       | A        |
| Approach LOS                  |             | В    |              |      | 0.0<br>A  |            |           | 10.3<br>B   |      |       | 12.1<br>B  |          |
|                               |             | В    |              |      | A         |            |           | D           |      |       | Б          |          |
| Intersection Summary          |             |      |              |      |           |            |           |             |      |       |            |          |
| HCM 2000 Control Delay        |             |      | 13.0         | Н    | CM 2000   | Level of   | Service   |             | В    |       |            |          |
| HCM 2000 Volume to Capa       | acity ratio |      | 0.50         |      |           |            |           |             |      |       |            |          |
| Actuated Cycle Length (s)     |             |      | 75.0         |      | um of los |            |           |             | 22.0 |       |            |          |
| Intersection Capacity Utiliza | ation       |      | 51.5%        | IC   | U Level   | of Service | 3         |             | А    |       |            |          |
| Analysis Period (min)         |             |      | 15           |      |           |            |           |             |      |       |            |          |
| c Critical Lane Group         |             |      |              |      |           |            |           |             |      |       |            |          |

# Queues 8: Route 161 & Frontage Road to I-95 SB Ramps/Daddy's Noodles Driveway

|                         | ≯    | $\mathbf{r}$ | 1    | 1    | Ŧ    | 1    |
|-------------------------|------|--------------|------|------|------|------|
| Lane Group              | EBL  | EBR          | NBL  | NBT  | SBT  | SBR  |
| Lane Group Flow (vph)   | 137  | 558          | 260  | 594  | 699  | 301  |
| v/c Ratio               | 0.47 | 0.40         | 0.50 | 0.25 | 0.43 | 0.27 |
| Control Delay           | 32.8 | 2.1          | 23.7 | 6.3  | 16.3 | 1.3  |
| Queue Delay             | 0.0  | 0.0          | 0.0  | 0.0  | 0.0  | 0.0  |
| Total Delay             | 32.8 | 2.1          | 23.7 | 6.3  | 16.3 | 1.3  |
| Queue Length 50th (ft)  | 59   | 0            | 41   | 45   | 108  | 0    |
| Queue Length 95th (ft)  | 101  | 25           | 60   | 96   | 193  | 22   |
| Internal Link Dist (ft) |      |              |      | 824  | 1287 |      |
| Turn Bay Length (ft)    |      |              |      |      |      | 160  |
| Base Capacity (vph)     | 343  | 1368         | 530  | 2406 | 1614 | 1149 |
| Starvation Cap Reductn  | 0    | 0            | 0    | 0    | 0    | 0    |
| Spillback Cap Reductn   | 0    | 0            | 0    | 0    | 0    | 0    |
| Storage Cap Reductn     | 0    | 0            | 0    | 0    | 0    | 0    |
| Reduced v/c Ratio       | 0.40 | 0.41         | 0.49 | 0.25 | 0.43 | 0.26 |
| Intersection Summary    |      |              |      |      |      |      |

# HCM Signalized Intersection Capacity Analysis 4: Route 161 & U.S. Route 1 (Boston Post Rd)

| Lane Configurations         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | ٨           | <b>→</b>   | *    | 4     | Ļ         | *          | •       | 1    | 1    | 1     | Ŧ          | ~    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------|------------|------|-------|-----------|------------|---------|------|------|-------|------------|------|
| Traffic Volume (vph)       110       240       200       300       280       120       190       340       150       190       420         Future Volume (vph)       1100       240       200       300       280       120       190       340       150       190       420         Ideal Flow (vphp)       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       190       190       190       190       190       190       190       190       190       190       190       190       190       190       190       190       190       190       190       190       190       190       190       190 <t< th=""><th>Movement</th><th>EBL</th><th>EBT</th><th>EBR</th><th>WBL</th><th></th><th></th><th>NBL</th><th>NBT</th><th>NBR</th><th>SBL</th><th>SBT</th><th>SBR</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Movement              | EBL         | EBT        | EBR  | WBL   |           |            | NBL     | NBT  | NBR  | SBL   | SBT        | SBR  |
| Fulure (vph)         110         240         200         300         280         120         190         190         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         100         100         100         100         100         100         100         100         100         100         100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |             | <b>≜</b> ⊅ |      |       |           |            | ሻ       |      |      |       | <b>≜</b> ⊅ |      |
| Ideal Flow (ophp)       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       100       100       100       100       100       100       100       100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Traffic Volume (vph)  |             |            |      |       |           |            |         |      |      |       |            | 100  |
| Lane With       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       110       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |             |            |      |       |           |            |         |      |      |       |            | 100  |
| Total Lost time (s)       4.0       5.5       4.0       5.0       5.0       4.0       5.5       4.0       5.0         Lane UII. Factor       1.00       0.95       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1900</td><td>1900</td><td></td><td></td><td></td><td></td><td>1900</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |             |            |      |       |           | 1900       | 1900    |      |      |       |            | 1900 |
| Lane Util, Factor       1.00       0.95       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |             |            | 12   |       |           |            |         |      | 11   |       |            | 12   |
| Frpb, pedibikes       1.00       0.99       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       1.01       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |             |            |      |       |           |            |         |      |      |       |            |      |
| Flipb, ped/bikes       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       0.95       1.00       0.09       1.00       0.95       1.00       0.09       1.00       0.95       1.00       0.09       1.00       0.95       1.00       0.09       1.00       0.95       1.00       0.00       0.95       1.00       0.07       0.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |             |            |      |       |           |            |         |      |      |       |            |      |
| Fri       1.00       0.93       1.00       1.00       0.85       1.00       0.95       1.00       0.97         Fit Protected       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.94       0.94       0.94       0.94       0.94       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97 <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.00</td> <td>0.98</td> <td></td> <td></td> <td></td> <td>1.00</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |             |            |      |       | 1.00      | 0.98       |         |      |      | 1.00  |            |      |
| Fit Protected       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00         Satd. Flow (prot)       1692       3136       1710       1801       1495       1711       1711       1694       3389         Fit Permitted       0.57       1.00       0.28       1.00       1.00       0.35       1.00       0.14       1.00         Satd. Flow (perm)       1014       3136       512       1801       1495       636       1711       255       3389         Peak-hour factor, PHF       0.94       0.94       0.94       0.89       0.89       0.89       0.94       0.94       0.97       0.97       0.07         Adj. Flow (vph)       117       255       213       337       315       452       202       366       0       109       130         Lane Group Flow (vph)       117       338       0       337       315       452       202       506       0       196       517         Confl. Peds. (#/hr)       2       2       2       2       2       2       2       2       2       2       2       33       3%       2%       2%       2%       3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Flpb, ped/bikes       |             |            |      |       |           |            |         |      |      |       |            |      |
| Satd. Flow (prot)       1692       3136       1710       1801       1495       1710       1711       1694       3389         Fit Permitted       0.57       1.00       0.28       1.00       1.00       0.35       1.00       0.14       1.00         Satd. Flow (perm)       1014       3136       512       1801       1495       636       1711       255       3389         Peak-hour factor, PHF       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.97       0.97       0         Adj. Flow (xph)       117       255       213       337       315       135       202       362       160       196       433         RTOR Reduction (yph)       0       130       0       0       0       90       0       16       0       0       19         Lane Group Flow (yph)       117       338       0       337       315       45       202       506       0       196       517         Confl. Peds. (#hr)       2       2       2       2       2       2       2       2       2       2       2       2       2       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Frt                   | 1.00        | 0.93       |      | 1.00  | 1.00      | 0.85       | 1.00    |      |      | 1.00  | 0.97       |      |
| Fit Permitted       0.57       1.00       0.28       1.00       1.00       0.35       1.00       0.14       1.00         Satd. Flow (perm)       1014       3136       512       1801       1495       636       1711       255       3389         Peak-hour factor, PHF       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.94       0.97       0.07       0.07       0.07       0.07       0.07       0.07       0.07       0.07       0.07       0.07       0.07       0.07       0.07       0.07       0.07       0.07       0.07       0.07       0.07       0.07       0.07       0.07       0.07       0.07       0.07       0.07       0.07       0.07       0.07       0.07       0.07       0.07       0.07       0.07       0.07       0.07       0.07       0.07       0.07       0.07       0.07       0.07       0.07       0.07       0.07       0.07       0.07       0.07       0.07       0.07       0.07       0.07       0.07       0.07       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Flt Protected         | 0.95        | 1.00       |      | 0.95  | 1.00      | 1.00       | 0.95    | 1.00 |      | 0.95  | 1.00       |      |
| Satd. Flow (perm)         1014         3136         512         1801         1495         636         1711         255         3389           Peak-hour factor, PHF         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Satd. Flow (prot)     |             | 3136       |      | 1710  | 1801      | 1495       | 1710    |      |      | 1694  | 3389       |      |
| Peak-hour factor, PHF         0.94         0.94         0.94         0.89         0.89         0.89         0.94         0.94         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Flt Permitted         | 0.57        | 1.00       |      | 0.28  | 1.00      | 1.00       | 0.35    | 1.00 |      | 0.14  | 1.00       |      |
| Adj. Flow (vph)       117       255       213       337       315       135       202       362       160       196       433         RTOR Reduction (vph)       0       130       0       0       0       90       0       16       0       0       19         Lane Group Flow (vph)       117       338       0       337       315       45       202       506       0       196       517         Confl. Peds. (#/hr)       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       36       40       53       40       50       50       40       55       40       50       50       40       55       40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Satd. Flow (perm)     | 1014        | 3136       |      | 512   | 1801      | 1495       | 636     | 1711 |      | 255   | 3389       |      |
| RTOR Reduction (vph)       0       130       0       0       0       90       0       16       0       0       19         Lane Group Flow (vph)       117       338       0       337       315       45       202       506       0       196       517         Confl. Peds. (#/hr)       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Peak-hour factor, PHF | 0.94        | 0.94       | 0.94 | 0.89  | 0.89      | 0.89       | 0.94    | 0.94 | 0.94 | 0.97  | 0.97       | 0.97 |
| Lane Group Flow (vph)       117       338       0       337       315       45       202       506       0       196       517         Confl. Peds. (#/hr)       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       3       3%       3%       3%       3%       2%       2%       2%       2%       2%       2%       3%       3%       3%       3%       3%       3%       3%       3%       3%       3%       3%       3%       3%       3%       3%       3%       3%       3%       3%       3%       3%       3%       3%       3%       3%       3%       3%       3%       3%       3%       3%       3%       3%       3%       3%       3%       3%       3%       3%       3%       3%       3%       3%       3%       3%       3%       3%       3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Adj. Flow (vph)       | 117         | 255        | 213  | 337   | 315       | 135        | 202     | 362  | 160  | 196   | 433        | 103  |
| Confl. Peds. (#/hr)         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         3         3         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3% </td <td>RTOR Reduction (vph)</td> <td>0</td> <td>130</td> <td>0</td> <td>0</td> <td>0</td> <td>90</td> <td>0</td> <td>16</td> <td>0</td> <td>0</td> <td>19</td> <td>0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RTOR Reduction (vph)  | 0           | 130        | 0    | 0     | 0         | 90         | 0       | 16   | 0    | 0     | 19         | 0    |
| Heavy Vehicles (%)         3%         3%         3%         2%         2%         2%         2%         2%         3%         3%           Turn Type         pm+pt         NA         pm+pt         NA         pm+pt         NA         pm+pt         NA         pm+pt         NA           Protected Phases         1         6         5         2         3         8         7         4           Permitted Phases         6         2         2         8         4         4           Actuated Green, G (s)         32.1         24.7         47.6         36.2         36.2         47.1         35.6         49.2         36.9           Effective Green, g (s)         32.1         24.7         47.6         36.2         36.2         47.1         35.6         49.2         36.9           Actuated g/C Ratio         0.29         0.22         0.43         0.33         0.33         0.33         0.32         0.45         0.34           Clearance Time (s)         4.0         5.5         4.0         5.0         5.0         4.0         5.0         V         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0 <td< td=""><td>Lane Group Flow (vph)</td><td>117</td><td>338</td><td>0</td><td>337</td><td>315</td><td>45</td><td>202</td><td>506</td><td>0</td><td>196</td><td>517</td><td>0</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                            | Lane Group Flow (vph) | 117         | 338        | 0    | 337   | 315       | 45         | 202     | 506  | 0    | 196   | 517        | 0    |
| Turn Type         pm+pt         NA         pm+pt         NA         Perm         pm+pt         NA         pm+pt         NA           Protected Phases         1         6         5         2         3         8         7         4           Permitted Phases         6         2         2         8         4         4           Actuated Green, G (s)         32.1         24.7         47.6         36.2         36.2         47.1         35.6         49.2         36.9           Effective Green, g (s)         32.1         24.7         47.6         36.2         36.2         47.1         35.6         49.2         36.9           Actuated g/C Ratio         0.29         0.22         0.43         0.33         0.33         0.32         0.45         0.34           Clearance Time (s)         4.0         5.5         4.0         5.0         5.0         4.0         5.5         4.0         5.0           Vehicle Extension (s)         2.0         2.5         2.0         2.5         2.0         2.0         2.0         2.0           Lane Grp Cap (vph)         341         704         421         592         491         384         553         2.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Confl. Peds. (#/hr)   | 2           |            | 2    | 2     |           | 2          | 2       |      | 2    | 2     |            | 2    |
| Protected Phases         1         6         5         2         3         8         7         4           Permitted Phases         6         2         2         8         4           Actuated Green, G (s)         32.1         24.7         47.6         36.2         36.2         47.1         35.6         49.2         36.9           Effective Green, g (s)         32.1         24.7         47.6         36.2         36.2         47.1         35.6         49.2         36.9           Actuated g/C Ratio         0.29         0.22         0.43         0.33         0.33         0.43         0.32         0.45         0.34           Clearance Time (s)         4.0         5.5         4.0         5.0         5.0         4.0         5.5         4.0         5.0           Vehicle Extension (s)         2.0         2.5         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Heavy Vehicles (%)    | 3%          | 3%         | 3%   | 2%    | 2%        | 2%         | 2%      | 2%   | 2%   | 3%    | 3%         | 3%   |
| Protected Phases         1         6         5         2         3         8         7         4           Permitted Phases         6         2         2         8         4           Actuated Green, G (s)         32.1         24.7         47.6         36.2         36.2         47.1         35.6         49.2         36.9           Effective Green, g (s)         32.1         24.7         47.6         36.2         36.2         47.1         35.6         49.2         36.9           Actuated g/C Ratio         0.29         0.22         0.43         0.33         0.33         0.43         0.32         0.45         0.34           Clearance Time (s)         4.0         5.5         4.0         5.0         5.0         4.0         5.5         4.0         5.0           Vehicle Extension (s)         2.0         2.5         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Turn Type             | pm+pt       | NA         |      | pm+pt | NA        | Perm       | pm+pt   | NA   |      | pm+pt | NA         |      |
| Actuated Green, G (s)       32.1       24.7       47.6       36.2       36.2       47.1       35.6       49.2       36.9         Effective Green, g (s)       32.1       24.7       47.6       36.2       36.2       47.1       35.6       49.2       36.9         Actuated g/C Ratio       0.29       0.22       0.43       0.33       0.33       0.43       0.32       0.45       0.34         Clearance Time (s)       4.0       5.5       4.0       5.0       5.0       4.0       5.5       4.0       5.0         Vehicle Extension (s)       2.0       2.5       2.0       2.5       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |             |            |      |       |           |            |         |      |      |       |            |      |
| Actuated Green, G (s)       32.1       24.7       47.6       36.2       36.2       47.1       35.6       49.2       36.9         Effective Green, g (s)       32.1       24.7       47.6       36.2       36.2       47.1       35.6       49.2       36.9         Actuated g/C Ratio       0.29       0.22       0.43       0.33       0.33       0.43       0.32       0.45       0.34         Clearance Time (s)       4.0       5.5       4.0       5.0       5.0       4.0       5.5       4.0       5.0         Vehicle Extension (s)       2.0       2.5       2.0       2.5       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Permitted Phases      | 6           |            |      | 2     |           | 2          | 8       |      |      | 4     |            |      |
| Effective Green, g (s)       32.1       24.7       47.6       36.2       36.2       47.1       35.6       49.2       36.9         Actuated g/C Ratio       0.29       0.22       0.43       0.33       0.33       0.43       0.32       0.45       0.34         Clearance Time (s)       4.0       5.5       4.0       5.0       5.0       4.0       5.5       4.0       5.0         Vehicle Extension (s)       2.0       2.5       2.0       2.5       2.0       2.0       2.0       2.0       2.0       2.0         Lane Grp Cap (vph)       341       704       421       592       491       384       553       274       1136         v/s Ratio Prot       0.02       0.11       c0.13       0.17       0.05       c0.30       c0.08       0.15         v/s Ratio Perm       0.08       c0.21       0.03       0.17       0.24       v/c Ratio       0.34       0.48       0.80       0.53       0.92       0.72       0.45         Uniform Delay, d1       29.6       37.1       23.1       30.0       25.5       20.8       35.8       22.9       28.7         Progression Factor       1.00       1.00       1.00       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Actuated Green, G (s) |             | 24.7       |      | 47.6  | 36.2      | 36.2       | 47.1    | 35.6 |      | 49.2  | 36.9       |      |
| Actuated g/C Ratio       0.29       0.22       0.43       0.33       0.33       0.43       0.32       0.45       0.34         Clearance Time (s)       4.0       5.5       4.0       5.0       5.0       4.0       5.5       4.0       5.0         Vehicle Extension (s)       2.0       2.5       2.0       2.5       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 32.1        | 24.7       |      | 47.6  | 36.2      | 36.2       | 47.1    | 35.6 |      | 49.2  | 36.9       |      |
| Clearance Time (s)       4.0       5.5       4.0       5.0       5.0       4.0       5.5       4.0       5.0         Vehicle Extension (s)       2.0       2.5       2.0       2.5       2.5       2.0       2.0       2.0       2.0         Lane Grp Cap (vph)       341       704       421       592       491       384       553       274       1136         v/s Ratio Prot       0.02       0.11       c0.13       0.17       0.05       c0.30       c0.08       0.15         v/s Ratio Perm       0.08       c0.21       0.03       0.17       0.24           v/c Ratio       0.34       0.48       0.80       0.53       0.09       0.53       0.92       0.72       0.45         Uniform Delay, d1       29.6       37.1       23.1       30.0       25.5       20.8       35.8       22.9       28.7         Progression Factor       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       | 0.29        | 0.22       |      | 0.43  | 0.33      | 0.33       | 0.43    | 0.32 |      | 0.45  | 0.34       |      |
| Lane Grp Cap (vph)         341         704         421         592         491         384         553         274         1136           v/s Ratio Prot         0.02         0.11         c0.13         0.17         0.05         c0.30         c0.08         0.15           v/s Ratio Perm         0.08         c0.21         0.03         0.17         0.24         0.24           v/c Ratio         0.34         0.48         0.80         0.53         0.09         0.53         0.92         0.72         0.45           Uniform Delay, d1         29.6         37.1         23.1         30.0         25.5         20.8         35.8         22.9         28.7           Progression Factor         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 4.0         | 5.5        |      | 4.0   | 5.0       | 5.0        | 4.0     | 5.5  |      | 4.0   | 5.0        |      |
| Lane Grp Cap (vph)         341         704         421         592         491         384         553         274         1136           v/s Ratio Prot         0.02         0.11         c0.13         0.17         0.05         c0.30         c0.08         0.15           v/s Ratio Perm         0.08         c0.21         0.03         0.17         0.24         0.24           v/c Ratio         0.34         0.48         0.80         0.53         0.09         0.53         0.92         0.72         0.45           Uniform Delay, d1         29.6         37.1         23.1         30.0         25.5         20.8         35.8         22.9         28.7           Progression Factor         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vehicle Extension (s) | 2.0         | 2.5        |      | 2.0   | 2.5       | 2.5        | 2.0     | 2.0  |      | 2.0   | 2.0        |      |
| v/s Ratio Prot       0.02       0.11       c0.13       0.17       0.05       c0.30       c0.08       0.15         v/s Ratio Perm       0.08       c0.21       0.03       0.17       0.24         v/c Ratio       0.34       0.48       0.80       0.53       0.09       0.53       0.92       0.72       0.45         Uniform Delay, d1       29.6       37.1       23.1       30.0       25.5       20.8       35.8       22.9       28.7         Progression Factor       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | 341         | 704        |      | 421   | 592       | 491        | 384     | 553  |      | 274   | 1136       |      |
| v/s Ratio Perm       0.08       c0.21       0.03       0.17       0.24         v/c Ratio       0.34       0.48       0.80       0.53       0.09       0.53       0.92       0.72       0.45         Uniform Delay, d1       29.6       37.1       23.1       30.0       25.5       20.8       35.8       22.9       28.7         Progression Factor       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |             |            |      |       |           |            |         |      |      |       |            |      |
| v/c Ratio       0.34       0.48       0.80       0.53       0.09       0.53       0.92       0.72       0.45         Uniform Delay, d1       29.6       37.1       23.1       30.0       25.5       20.8       35.8       22.9       28.7         Progression Factor       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |             |            |      |       |           | 0.03       |         |      |      |       |            |      |
| Uniform Delay, d1       29.6       37.1       23.1       30.0       25.5       20.8       35.8       22.9       28.7         Progression Factor       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |             | 0.48       |      |       | 0.53      |            |         | 0.92 |      |       | 0.45       |      |
| Progression Factor         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00 <td></td>                                                                                                                                                                                                                                                                                                                                                                                             |                       |             |            |      |       |           |            |         |      |      |       |            |      |
| Incremental Delay, d2       0.2       2.3       9.9       3.4       0.4       0.6       19.6       7.2       0.1         Delay (s)       29.9       39.4       33.0       33.4       25.9       21.4       55.3       30.1       28.8         Level of Service       C       D       C       C       C       E       C       C         Approach Delay (s)       37.5       31.9       45.8       29.1         Approach LOS       D       C       D       C       D       C         Intersection Summary       T       35.9       HCM 2000 Level of Service       D       D         HCM 2000 Volume to Capacity ratio       0.86       0.86       T       T       T       T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |             |            |      |       |           |            |         |      |      |       |            |      |
| Delay (s)         29.9         39.4         33.0         33.4         25.9         21.4         55.3         30.1         28.8           Level of Service         C         D         C         C         C         E         C         C           Approach Delay (s)         37.5         31.9         45.8         29.1           Approach LOS         D         C         D         C         Image: Constraint of the service of |                       |             |            |      |       |           |            |         |      |      |       |            |      |
| Level of ServiceCDCCCCCCCApproach Delay (s)37.531.945.829.1Approach LOSDCDCIntersection SummaryHCM 2000 Control Delay35.9HCM 2000 Level of ServiceDHCM 2000 Volume to Capacity ratio0.860.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |             |            |      |       |           |            |         |      |      |       |            |      |
| Approach Delay (s)37.531.945.829.1Approach LOSDCDCIntersection SummaryHCM 2000 Control Delay35.9HCM 2000 Level of ServiceDHCM 2000 Volume to Capacity ratio0.86D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |             |            |      |       |           |            |         |      |      |       |            |      |
| Approach LOSDCDCIntersection SummaryHCM 2000 Control Delay35.9HCM 2000 Level of ServiceDHCM 2000 Volume to Capacity ratio0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |             |            |      |       |           |            |         |      |      |       | 29.1       |      |
| HCM 2000 Control Delay35.9HCM 2000 Level of ServiceDHCM 2000 Volume to Capacity ratio0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |             |            |      |       |           |            |         |      |      |       |            |      |
| HCM 2000 Control Delay35.9HCM 2000 Level of ServiceDHCM 2000 Volume to Capacity ratio0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Intersection Summary  |             |            |      |       |           |            |         |      |      |       |            |      |
| HCM 2000 Volume to Capacity ratio 0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |             |            | 35.9 | H     | CM 2000   | Level of   | Service |      | D    |       |            |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       | acity ratio |            |      |       | 2000      |            |         |      |      |       |            |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       | .,          |            |      | S     | um of los | t time (s) |         |      | 19.0 |       |            |      |
| Intersection Capacity Utilization 83.2% ICU Level of Service E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       | ation       |            |      |       |           |            |         |      |      |       |            |      |
| Analysis Period (min) 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |             |            |      |       |           |            |         |      |      |       |            |      |
| c Critical Lane Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |             |            |      |       |           |            |         |      |      |       |            |      |

# Queues 4: Route 161 & U.S. Route 1 (Boston Post Rd)

|                         | ۶    | +    | 4    | +    | *    | 1    | Ť    | 1    | ţ    |
|-------------------------|------|------|------|------|------|------|------|------|------|
| Lane Group              | EBL  | EBT  | WBL  | WBT  | WBR  | NBL  | NBT  | SBL  | SBT  |
| Lane Group Flow (vph)   | 117  | 468  | 337  | 315  | 135  | 202  | 522  | 196  | 536  |
| v/c Ratio               | 0.33 | 0.56 | 0.79 | 0.53 | 0.23 | 0.51 | 0.92 | 0.71 | 0.46 |
| Control Delay           | 24.8 | 28.4 | 37.7 | 35.5 | 6.1  | 20.8 | 56.3 | 33.4 | 28.0 |
| Queue Delay             | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| Total Delay             | 24.8 | 28.4 | 37.7 | 35.5 | 6.1  | 20.8 | 56.3 | 33.4 | 28.0 |
| Queue Length 50th (ft)  | 52   | 107  | 174  | 197  | 1    | 74   | 329  | 71   | 138  |
| Queue Length 95th (ft)  | 90   | 160  | #259 | 274  | 43   | 122  | #503 | #172 | 192  |
| Internal Link Dist (ft) |      | 985  |      | 299  |      |      | 1287 |      | 769  |
| Turn Bay Length (ft)    | 90   |      | 310  |      | 140  | 190  |      | 260  |      |
| Base Capacity (vph)     | 359  | 874  | 448  | 617  | 600  | 405  | 629  | 281  | 1242 |
| Starvation Cap Reductn  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Spillback Cap Reductn   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Storage Cap Reductn     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Reduced v/c Ratio       | 0.33 | 0.54 | 0.75 | 0.51 | 0.23 | 0.50 | 0.83 | 0.70 | 0.43 |
| Interception Cummon     |      |      |      |      |      |      |      |      |      |

#### Intersection Summary

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

|                               | ≯         | $\mathbf{\hat{z}}$ | •     | 1    | ţ          | ∢         |
|-------------------------------|-----------|--------------------|-------|------|------------|-----------|
| Movement                      | EBL       | EBR                | NBL   | NBT  | SBT        | SBR       |
| Lane Configurations           | ۲         | 1                  | ۲.    | 1    | 4          |           |
| Traffic Volume (veh/h)        | 10        | 30                 | 30    | 460  | 610        | 10        |
| Future Volume (Veh/h)         | 10        | 30                 | 30    | 460  | 610        | 10        |
| Sign Control                  | Stop      |                    |       | Free | Free       |           |
| Grade                         | 0%        |                    |       | 0%   | 0%         |           |
| Peak Hour Factor              | 0.83      | 0.83               | 0.96  | 0.96 | 0.90       | 0.90      |
| Hourly flow rate (vph)        | 12        | 36                 | 31    | 479  | 678        | 11        |
| Pedestrians                   | 5         |                    |       | 5    | 5          |           |
| Lane Width (ft)               | 13.0      |                    |       | 12.0 | 12.0       |           |
| Walking Speed (ft/s)          | 3.5       |                    |       | 3.5  | 3.5        |           |
| Percent Blockage              | 1         |                    |       | 0    | 0          |           |
| Right turn flare (veh)        |           |                    |       |      |            |           |
| Median type                   |           |                    |       | None | None       |           |
| Median storage veh)           |           |                    |       |      |            |           |
| Upstream signal (ft)          |           |                    |       | 849  |            |           |
| pX, platoon unblocked         |           |                    |       |      |            |           |
| vC, conflicting volume        | 1234      | 694                | 694   |      |            |           |
| vC1, stage 1 conf vol         |           |                    |       |      |            |           |
| vC2, stage 2 conf vol         |           |                    |       |      |            |           |
| vCu, unblocked vol            | 1234      | 694                | 694   |      |            |           |
| tC, single (s)                | 6.4       | 6.2                | 4.1   |      |            |           |
| tC, 2 stage (s)               |           |                    |       |      |            |           |
| tF (s)                        | 3.5       | 3.3                | 2.2   |      |            |           |
| p0 queue free %               | 93        | 92                 | 97    |      |            |           |
| cM capacity (veh/h)           | 184       | 434                | 897   |      |            |           |
| Direction, Lane #             | EB 1      | EB 2               | NB 1  | NB 2 | SB 1       |           |
| Volume Total                  | 12        | 36                 | 31    | 479  | 689        |           |
| Volume Left                   | 12        | 0                  | 31    | 0    | 0          |           |
| Volume Right                  | 0         | 36                 | 0     | 0    | 11         |           |
| cSH                           | 184       | 434                | 897   | 1700 | 1700       |           |
| Volume to Capacity            | 0.07      | 0.08               | 0.03  | 0.28 | 0.41       |           |
| Queue Length 95th (ft)        | 5         | 7                  | 3     | 0.20 | 0.11       |           |
| Control Delay (s)             | 26.0      | ,<br>14.1          | 9.2   | 0.0  | 0.0        |           |
| Lane LOS                      | 20.0<br>D | В                  | A     | 0.0  | 0.0        |           |
| Approach Delay (s)            | 17.0      | U                  | 0.6   |      | 0.0        |           |
| Approach LOS                  | C         |                    | 0.0   |      | 0.0        |           |
|                               |           |                    |       |      |            |           |
| Intersection Summary          |           |                    | 0.0   |      |            |           |
| Average Delay                 | - t!      |                    | 0.9   |      |            | f Comilar |
| Intersection Capacity Utiliza | auon      |                    | 44.3% | IC   | CU Level o | I Service |
| Analysis Period (min)         |           |                    | 15    |      |            |           |

# APPENDIX D ENVIRONMENTAL PERMITTING OVERVIEW





Dato.

July 7 2023

Job No.: 22.10369

| Dutc.    | July 7, 2020                                                    | JOD 110   | 22.10307 |
|----------|-----------------------------------------------------------------|-----------|----------|
| То:      | James S. Butler, AICP, SCCOG<br>Senior Advisor, Project Manager |           |          |
| Cc:      |                                                                 |           |          |
| From:    | Joe Rimiller, PE, PTOE, LEED AP, BETA<br>Laura Krause, BETA     |           |          |
|          | Elyse Tripp, BETA                                               |           |          |
| Subject: | Environmental Permitting Overview                               |           |          |
| -        | Route 161 Corridor Improvement Project – East Ly                | /me, Conn | ecticut  |

BETA has been retained by the Southeastern Connecticut Council of Governments (SCCOG), in cooperation with the Town of East Lyme and the Connecticut Department of Transportation (CTDOT), to participate in the Connecticut State Route 161 Corridor Study to assess existing and forecasted conditions on the corridor and develop a comprehensive plan to guide future transportation improvements along the corridor.

The purpose of this memorandum is to provide an overview of the anticipated environmental impacts and required environmental permitting associated with conceptual plans developed to improve the Route 161 Corridor.

#### **PROJECT / SITE DESCRIPTION**

Route 161 is a major north-south arterial that is vital to transportation in the Town of East Lyme. The Corridor Study included an approximately 3.7-mile section of Route 161 from Route 156 (Main Street) to the driveway of East Lyme High School (Figure 1). Proposed pedestrian improvements along the Project Corridor have been broken up into the following seven segments, starting from the south:

#### Segment 1 – Route 156 (Main Street) to Smith Street

This segment starts at the intersection of Pennsylvania Avenue (Route 161) and Main Street (Route 156) and ends at Smith Street. Improvements proposed within this segment include:

- Stripe on-street parking spaces and bike lanes;
- Install a new traffic signal at the Route 161 and Route 156 (Main Street) intersection;
- Install crosswalks across side streets with high pedestrian volumes including Grand Street, Hope Street, State Street, and Lincoln Street;
- Reconstruct pedestrian curb ramps at various locations;
- Construct a pocket parking area on the west of the corridor, just south of Hope Street;
- Install pedestrian scale lighting between Smith Street and Hope Street;
- Plant street trees within the public right-of-way; and
- Widen the existing sidewalk along the west side of Route 161.

Segment 2 – Smith Street to East Pattagansett Road

This segment of Route 161 starts at Smith Street and ends at East Pattagansett Road. Improvements proposed within this segment include:

- Construct pedestrian curb ramps where none are provided;
- Reconstruct pedestrian curb ramps and install detectable warning panels at various locations;

- Stripe bike lanes along both sides of Route 161;
- Construct a new sidewalk along the east side of Route 161 between Smith Street and Oswegatchie Hills Road;
- Construct a new sidewalk along the north side of Route 161 between Oswegatchie Hils Road and Sleepy Hollow Road; and
- Widen the existing sidewalk along both sides of Route 161.

Segment 3 – East Pattagansett Road to Society Road

This segment starts at East Pattagansett Road and ends at Society Road. Improvements proposed within this segment include:

- Install speed feedback signs to discourage speeding;
- Restripe the existing shoulder with 6"- wide shoulder markings;
- Reconstruct pedestrian curb ramps at various locations;
- Install new traffic signals at the Route 161/East Pattagansett Road and Route 161/Roxbury Road intersections;
- Install a dedicated northbound left turn lane at the Roxbury Road signal;
- Install crosswalks across both roadways at the intersection of Route 161 and Roxbury Road;
- Install a crosswalk across Route 161 at Oak Hill Drive to improve access to the proposed sidewalk;
- Widen the existing sidewalk along the east side of Route 161; and
- Install a 10'-wide shared use path along the west side of Route 161. Retaining walls will be necessary to support the sidewalk along the south end of Gorton Pond.

Segment 4 – Society Road to Industrial Park Road

This segment starts at Society Road and ends at Industrial Park Road. Improvements proposed within this segment include:

- Install accessible pedestrian signals, implement exclusive pedestrian phasing, and stripe a crosswalk across Society Road at the intersection of Route 161 and Society Road;
- Construct pedestrian curb ramps where none are provided including the Laurel Hill Drive and Damon Heights Road crossings;
- Reconstruct pedestrian curb ramps and install detectable warning panels at various locations;
- Install an intersection warning sign on the northbound approach to Laurel Hill Drive;
- Restripe the roadway to incorporate a two-way left turn lane;
- Install a 10'-wide shared use path along the west side of Route 161;
- Realign the Laurel Hill Drive approach to Route 161; and
- Widen the existing sidewalk along the east side of Route 161.

Segment 5 – Industrial Park Road to Frontage Road

This segment starts at Industrial Park Road and ends at Frontage Road. Improvements proposed within this segment include:

- Install a crosswalk with pedestrian signals across Industrial Park Road and implement exclusive pedestrian phasing;
- Incorporate adaptive signal control at the new traffic signals to be installed at Industrial Park Road, the Exit 74 Off Ramp, and King Arthur Drive under the I-95 Interchange 74 Improvement project;
- Install a bus shelter northeast of Chapman Wood Road; and
- Install an 8'-wide shared use path along the west side of Route 161.



#### Segment 6 – Frontage Road to U.S. Route 1 (Boston Post Road)

This segment starts at Frontage Road and ends at U.S. Route 1 (Boston Post Road). Improvements proposed within this segment include:

- Incorporate adaptive signal control at the new traffic signal to be installed at Frontage Road under the I-95 Interchange 74 Improvement project;
- Install fiber optic interconnect to facilitate communication between the traffic signal at U.S. Route
  1 (Boston Post Road) and the signals at Frontage Road, King Arthur Drive, the I-95 Exit 74 Off
  Ramp, and Industrial Park Road;
- Construct a new 5'-wide concrete sidewalk on the east side of the corridor in front of Latimer Brook Commons;
- Install bus pull outs on both sides of the corridor just south of U.S. Route 1 (Boston Post Road);
- Install a bus shelter at each pull out to promote transit use;
- Construct a raised median island on the southern leg of the Route 161/U.S. Route 1 (Boston Post Road) intersection;
- Restripe the northbound approach to include an exclusive left turn lane and shared through/right turn lane to accommodate the median island; and
- Install a 10'-wide shared use path along the west side of Route 161.

Segment 7 - U.S. Route 1 (Boston Post Road) to East Lyme High School

This segment starts at U.S. Route 1 (Boston Post Road) and ends at East Lyme High School. Improvements proposed within this segment include:

- Implement a left-turn lane on the northbound approach to East Lyme High School;
- Incorporate adaptive signal control at Route 161/U.S. Route 1 (Boston Post Road) traffic signal; and
- Install a 10'-wide shared use path along the west side of Route 161.

### ENVIRONMENTAL CONTEXT, IMPACTS AND CONSIDERATIONS

Below is a brief overview of the environmental context of each of the segments described above and the Project's Impacts to various environmental resources. BETA also conducted a field visit to confirm the presence of wetlands along the Corridor on March 17, 2023. Table 1 provides a summary of the various environmental resources present within each segment.

|                           | Seg. 1 | Seg. 2 | Seg. 3 | Seg. 4 | Seg. 5       | Seg. 6       | Seg. 7       |
|---------------------------|--------|--------|--------|--------|--------------|--------------|--------------|
| Wetlands and Watercourses |        | √*     | ~      | √*     |              |              |              |
| Upland Review Area        | ~      | ~      | ~      | ~      | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| NDDB Habitat              | ✓      | √      | √      |        |              |              |              |
| Floodplain                |        |        | √      |        |              |              |              |
| Aquifer Protection Area   |        |        | ~      | ~      | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Historic Structures**     |        |        |        |        |              |              |              |
| Coastal Management Area   | ~      |        |        |        |              |              |              |

Table. 1 Environmental Impact Summary



\*Segments marked with an asterisk require a formal delineation to confirm whether the Project will impact wetlands or watercourses.

\*\* To determine the presence of historic structures in the Project Corridor, the Historic Property Database provided by the State Historic Preservation Office (SHPO) was consulted.

Segment 1 – Route 156 (Main Street) to Smith Street

This segment is within a primarily commercial area north of Niantic Bay (Figure 2a). Segment 1 is located within the Coastal Management Area until just north of Hope Street. Additionally, NDDB mapped habitat extends into the intersection of Main Street (Route 156) and Route 161 at the southern limit of this segment. No other environmentally sensitive or wetland resource areas were identified within or adjacent to Segment 1.

Work proposed within Segment 1 will be partially within NDDB Habitat, Coastal Management Area, and Upland Review Area. Work within 300 feet of wetlands and watercourses, known as the Upland Review Area, would be considered a Regulated Activity<sup>1</sup> under the Town of East Lyme Bylaw (the "Bylaw") and is subject to jurisdiction under Section 4.3 of the Bylaw. The Upland Review Area extends into the intersection of Main Street (Route 156) and Route 161 but is not present in any other portion of this segment. Additionally, work proposed at the southern end of this segment is partially within mapped NDDB habitat, and Coastal Management Area. Work within the Upland Review Area is not anticipated to impact any vegetated wetlands or watercourses.

Segment 2 – Smith Street to East Pattagansett Road

This segment is within a residential area east of Bush Pond and the Pattagansett River (Figure 2b). NDDB mapped habitat is present within the corridor north of Cove Drive and continues through Segment 2 and into Segment 3. An unnamed watercourse was observed during field review that flows underneath Pennsylvania Avenue east of 202 Pennsylvania Avenue. Vegetated wetlands were also observed on either side of the roadway associated with this watercourse, and additional vegetated wetlands were observed west of 202 Pennsylvania Avenue abutting the roadway.

Vegetated wetlands, as well as a Coastal Management Area, are mapped east of Pennsylvania Avenue between Penncove Drive and Oswegatchie Hills Road; however, these wetlands are located at the rear of multiple residential parcels and as such field confirmation of approximate limits could not be evaluated.

Work proposed within Segment 2 will be partially within NDDB Habitat and within Upland Review Area. Upland Review Area is present associated with the unnamed watercourse and associated vegetated wetlands on either side of Route 161 east of 202 Pennsylvania Avenue (Route 161) and the vegetated wetlands observed west of 202 Pennsylvania Avenue abutting the roadway. Widening of the existing sidewalk as well as the construction and reconstruction of pedestrian curb ramps will impact the Upland Review Area and NDDB habitat in some locations within Segment 2. This work may also impact wetlands; however, a formal wetland and watercourse delineation, as well as design plans are required to evaluate impacts.

Additionally, construction of the new sidewalk along the east side of Route 161 may also be within Upland Review Area associated with vegetated wetlands observed at the rear of the residential properties

<sup>&</sup>lt;sup>1</sup> A Regulated Activity as defined in Section 2 of the Bylaw means *any operation within or use of a wetland or watercourse involving removal or deposition of material, or any obstruction, construction, alteration or pollution, of such wetlands or watercourses* [...] *Furthermore, any clearing, grubbing, filling, grading, paving, excavating, constructing, depositing or removing of material and discharging storm water on the land within 300-feet measured horizontally from the boundary of any wetland or watercourse is a regulated activity.* 



between Penncove Drive and Oswegatchie Hills Road. Work within the Upland Review Area is not anticipated to impact any vegetated wetlands or watercourses.

Segment 3 – East Pattagansett Road to Society Road

This segment is within a residential area east of Gorton Pond, the Pattagansett River, and associated bordering wetlands (Figure 2c). A concrete dam is present at the southern end of Gorton Pond where it becomes the Pattagansett River and continues to flow south towards Bush Pond. During field review, BETA observed that the bank/ordinary high water of Gorton Pond was located less than 10 feet from the edge of pavement of Route 161 (Flanders Road) from north of 6 Flanders Road at the concrete dam to 44 Flanders Road. BETA also observed vegetated wetlands along the bank of Gorton Pond.

According to the FEMA Flood Insurance Rate Map (FIRM) community panel number 09011C0479J, dated effective August 5, 2013, Segment 3 from East Pattagansett Road to 143 Flanders Road is adjacent to, and may be partially within, a Flood Hazard Zone AE with a Base Flood Elevation (BFE) ranging from 25 to 27.6' (NAVD88).

Segment 3 is located almost entirely within a Primary Aquifer Protection District, and an Aquifer Protection Area is present at the northern end of this segment. Additionally, NDDB habitat is mapped within the corridor until just south of 143 Flanders Road. No other sensitive or wetland resource areas were identified within or adjacent to Segment 3.

Work proposed within Segment 3 will occur within vegetated wetlands, a Watercourse, Upland Review Area, NDDB Habitat, an Aquifer Protection Area and may also occur within floodplain. An Upland Review Area is present throughout Segment 3 associated with Gorton Pond, the Pattagansett River, and associated vegetated wetlands present to the west of the roadway. Construction of the new sidewalk west of Route 161, widening of the existing sidewalk east of Route 161, as well as the construction and reconstruction of pedestrian curb ramps will impact the Upland Review Area.

Additionally, impacts to vegetated wetlands, a watercourse (Gorton Pond), and floodplain is anticipated to construct a shared use path along the western side of Route 161. This sidewalk is proposed to be supported by a retaining wall. Anticipated impacts include approximately 1,775 sf of vegetation clearing, a cut of 650 cubic yards (CY) of material and the use of 175 CY of fill.

Segment 4 – Society Road to Industrial Park Road

This segment transitions from residential to primarily commercial properties (Figure 2d). The Pattagansett River and Gorton Pond are present along the entire length of this segment, generally located at the rear of existing residences and commercial properties west of the Route 161. Although these watercourses were only observable from the public right of way, it appeared during field review that vegetated wetlands bordering the watercourses were also present as mapped by the Town of East Lyme GIS maps.

Additionally, a small stream with associated vegetated wetlands was observed in the field, directly abutting the roadway north of 208 Flanders Road. This segment is outside of the floodplain but is located entirely within an Aquifer Protection Area. No other sensitive or wetland resource areas were identified within or adjacent to Segment 4.

Work proposed within Segment 4 will occur within Upland Review Area and an Aquifer Protection Area. Upland Review Area appears to be present throughout Segment 4 associated with Gorton Pond, the Pattagansett River, and associated vegetated wetlands present to the west of the roadway. Installation of an ten-foot wide shared use path, as well as the construction and reconstruction of pedestrian curb ramps will impact the Upland Review Area. Additionally, the proposed shared use path may impact the unnamed watercourse and associated vegetated wetlands that abut the roadway north of 208 Flanders Road;



however, a formal wetland and watercourse delineation, as well as design plans are required to evaluate impacts.

Segment 5 – Industrial Park Road to Frontage Road

This segment is within a commercial area surrounding the I-95 interchange (Figure 2e). A stone lined drainage swale visible from the roadway was observed during the field review. This swale is mapped as a stream by the Town of East Lyme GIS maps along Chapman Woods Road and was observed to be dry. This channel appears to be connected to a larger stream complex east of the Project Corridor; however, the presence of associated vegetated wetlands could not be confirmed. Where intermittent flow within this channel could not be confirmed nor denied, the channel would meet the definition of a watercourse under the Bylaw<sup>2</sup>.

Another series of stormwater drainage features, consisting of three (3) connected drainage swales, was observed south of Frontage Road between the overpass and the roadway. These drainages ditches also meet the definition of a watercourse. Although no flow was observed at the time of the field review, evidence of flow, including scour and sediment deposition, was observed. This segment is outside of the floodplain but is located entirely within an Aquifer Protection Area. No other sensitive or wetland resource areas were identified within or adjacent to Segment 5.

Work proposed within Segment 5 will occur within Upland Review Area and an Aquifer Protection Area. Upland Review Area within this segment is associated with watercourses observed along Chapman Woods Road and south of Frontage Road. Work to install a bus shelter and the eight-foot wide shared use path will impact Upland Review Area. Work within the Upland Review Area is not anticipated to impact any vegetated wetlands or watercourses.

Segment 6 – Frontage Road to U.S. Route 1 (Boston Post Road)

This segment is within a commercial area (Figure 2f). Vegetated wetlands are mapped within the Project Corridor at the northern end of this segment between Flanders Donut & Bake Shop and Latimer Brook Commons. This wetland area is located at the rear of existing commercial businesses, accordingly, a visual inspection during field review was not feasible. This segment is outside of the floodplain but is located partially within an Aquifer Protection Area. No other sensitive or wetland resource areas were identified within or adjacent to Segment 6.

Work proposed within Segment 6 will occur within Upland Review Area and an Aquifer Protection Area. Upland Review Area appears to be present associated with vegetated wetlands at the northern end of this segment between Flanders Donut & Bake Shop and Latimer Brook Commons. Work to install the shared used path west of Route 161, construct the sidewalk east of Route 161, and install bus pull out shelters and pull outs may be within Upland Review Area. Work within the Upland Review Area is not anticipated to impact any vegetated wetlands or watercourses.

Segment 7 - U.S. Route 1 (Boston Post Road) to East Lyme High School

This segment is within commercial area that transitions to residential areas north of this segment (Figure 2g). A mapped vegetated wetland associated with Latimer Brook was observed east of this segment located at the rear of residential and commercial properties. An Aquifer Protection Area is mapped along the western side of this segment but remains outside of the Project Corridor. This segment is outside of

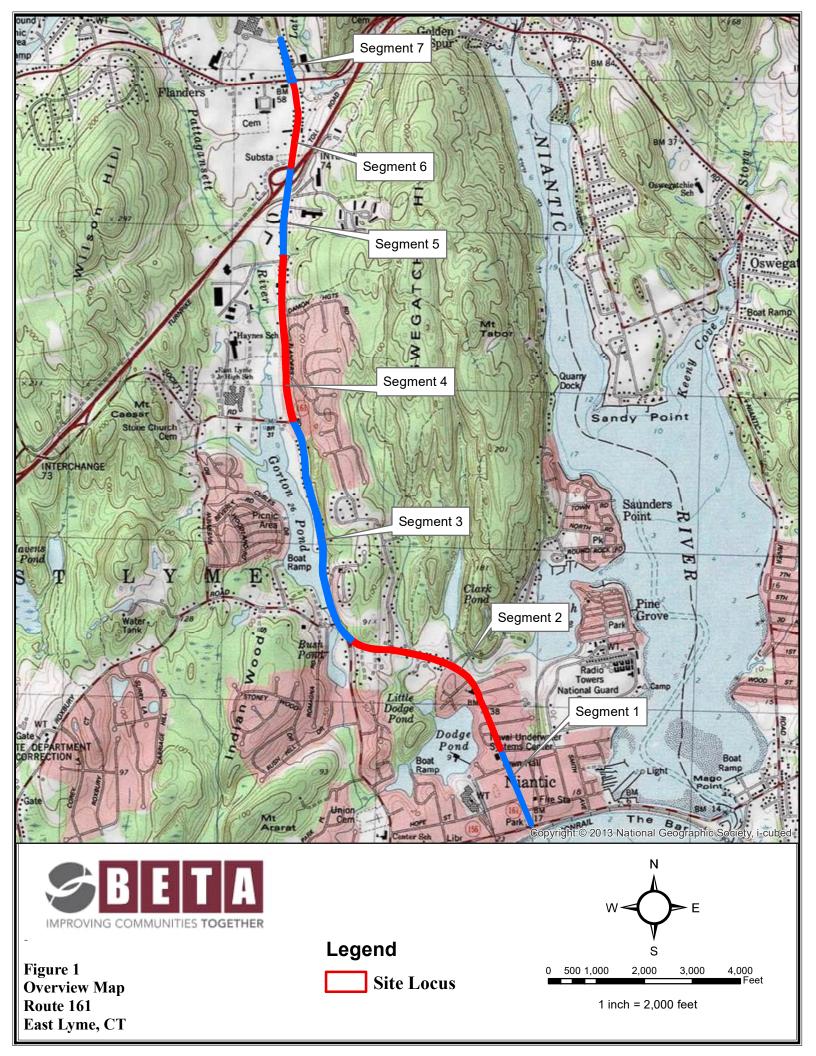
<sup>&</sup>lt;sup>2</sup> A Watercourse as defined in Section 2 of the Bylaw means rivers, streams, brooks, waterways, lakes, ponds, marshes, swamps, bogs, and all other bodies of water, natural or artificial, vernal or intermittent, public or private, which are contained within, flow through, or border upon the Town...

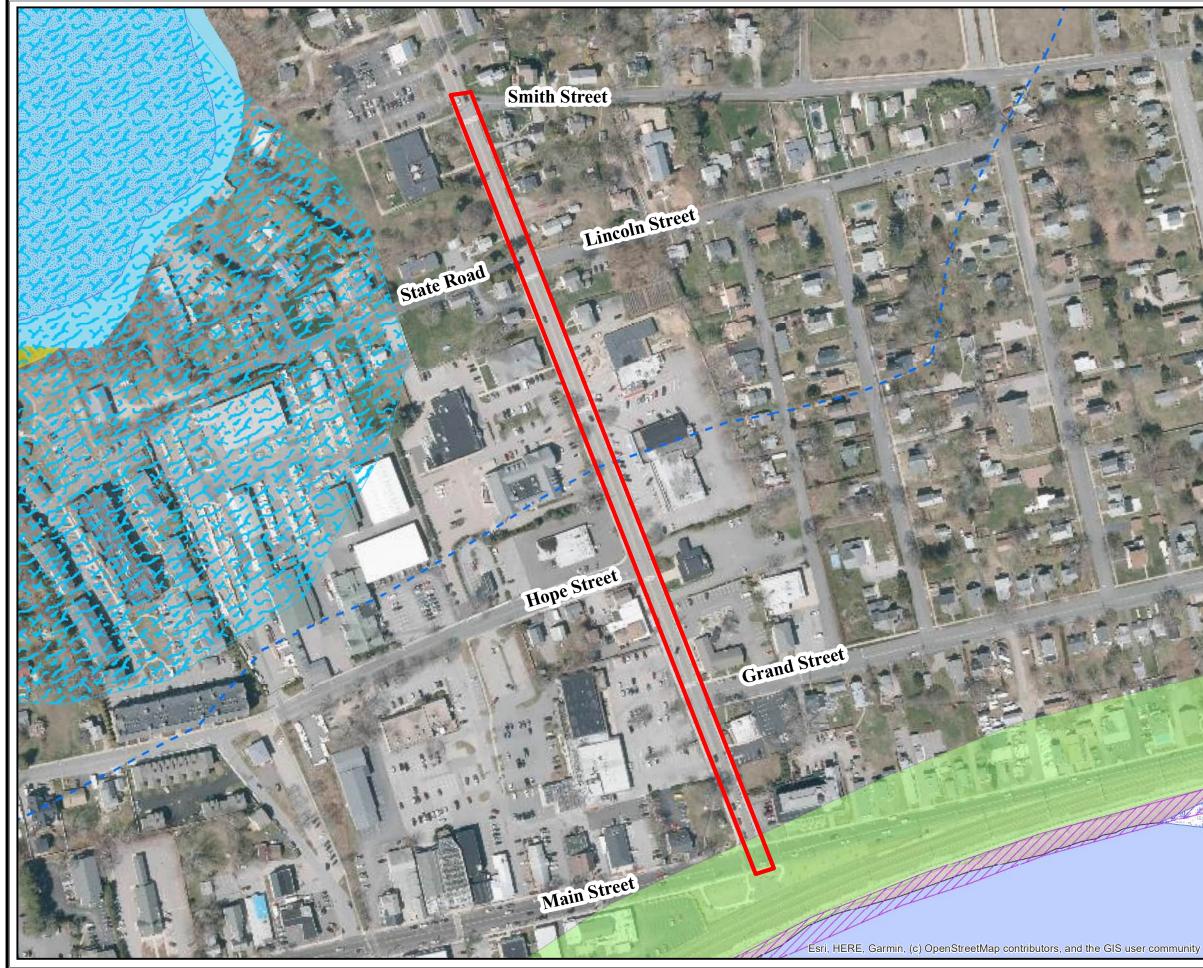


the floodplain, and no other sensitive or wetland resource areas were identified within or adjacent to Segment 7.

Work proposed within Segment 7 will occur within Upland Review Area and an Aquifer Protection Area. Upland Review Area associated with the vegetated wetlands is present at the northern extent of this segment. Installation of the shared use path west of Route 161 will partially be within the Upland Review Area. Work within the Upland Review Area is not anticipated to impact any vegetated wetlands or watercourses.

#### **ENVIRONMENTAL PERMITS REQUIRED**


Given the impacts associated with the proposed improvements and because it is anticipated that CTDOT funding will be pursued for implementation, the following environmental permits will be required to complete permitting for each of the Project segments.


- Town of East Lyme Inland Wetlands Permit for <u>all</u> Segments;
- Self-Verification Notification Form or Pre-Construction Notification under the US Army Corps of Engineers Section 404 Connecticut General Permits 17A for Segment 3, and potentially Segments 2 and 4, depending on final impacts;
- Submission of the Land and Water Resource Division (LWRD) License Application (Form L) to CTDEEP for Inland Wetlands and Watercourses and required attachments for Segment 3, and potentially Segments 2 and 4. Coordination with CTDEEP will be conducted during preliminary design to confirm CTDEEP filing requirements;
- NDDB Consultation Submission for Segments 1, 2 and 3;
- DEEP Stormwater Permit for the Project as a whole, as earth disturbance is anticipated to exceed two acres;
- Coastal Management Act Site Plan Review for Segment 1;
- East Lyme Floodplain Development Permit Application for Segment 3; and
- For state-funded projects, the work will require review and confirmation that the project will not have an effect or adverse effect on historic and / or archaeological resources. A Project Notification Form is required to be submitted to CT State Historic Preservation Office (SHPO), as required for state-funded projects, to comply with the Connecticut Environmental Policy Act (CEPA).


Attachments:

- 1. Figure 1: Site Locus
- 2. Figure 2a to 2g: Environmental Resource Maps
- 3. Figure 3: FEMA Flood Maps





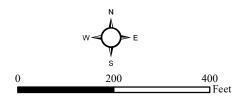




## Legend

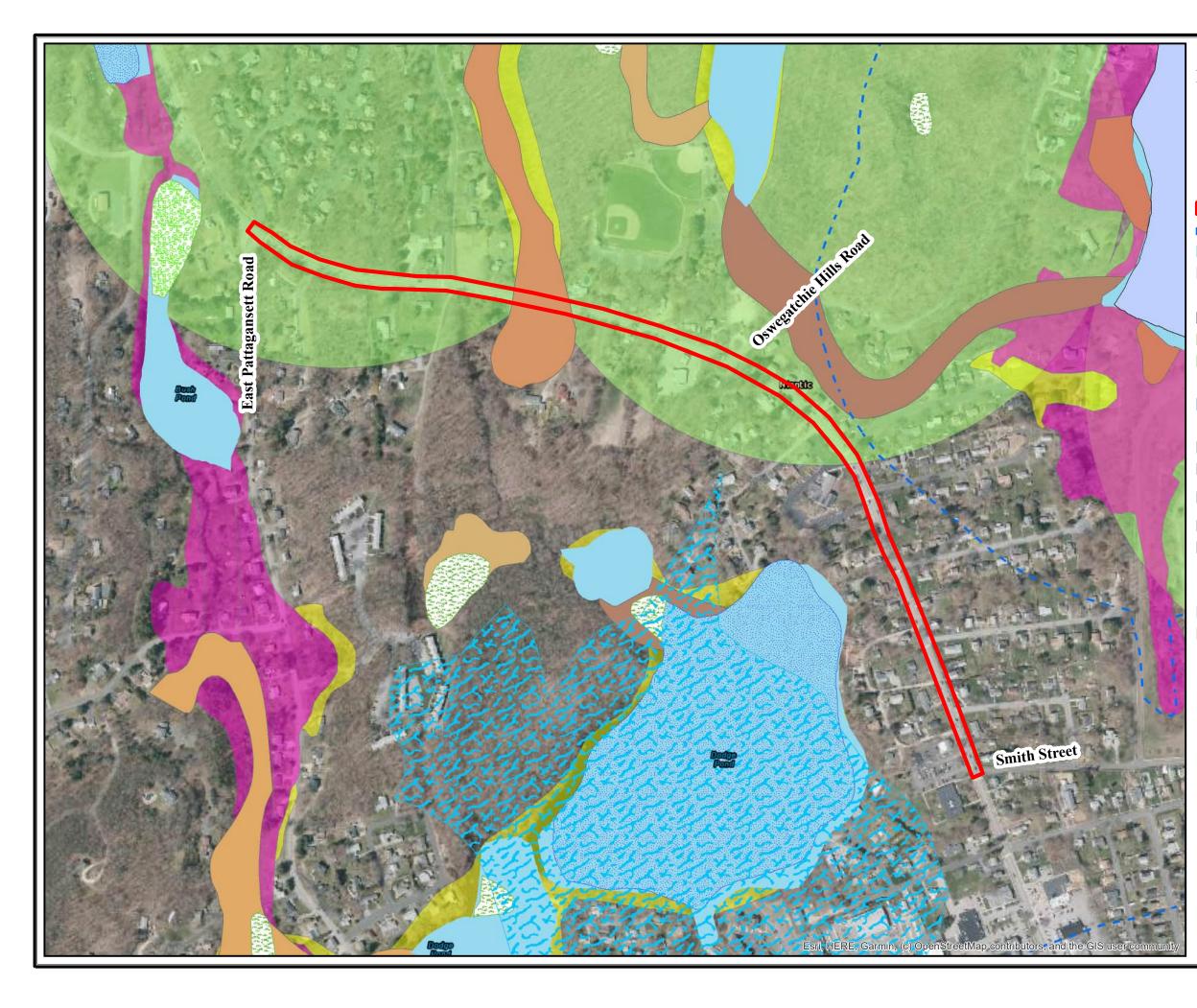
- Site Locus Segment 1 Coastal Area Boundary
- Aquifer Protection Area
- Critical Habitat
- Natural Diversity Database Area

#### National Wetlands Inventory


- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland
- Lake

#### **CTDEP** Wetlands

Water


#### **FEMA Floodplains**

- 0.2% Annual Flood Hazard
- VE



1 inch = 200 feet





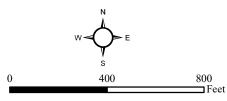
# Figure 2b Environmental Resources Map Segment 2 Smith Street to East Pattagansett Road East Lyme, CT

# Legend

- Site Locus Segment 2
- Coastal Area Boundary
- Aquifer Protection Area
- Natural Diversity Database Area

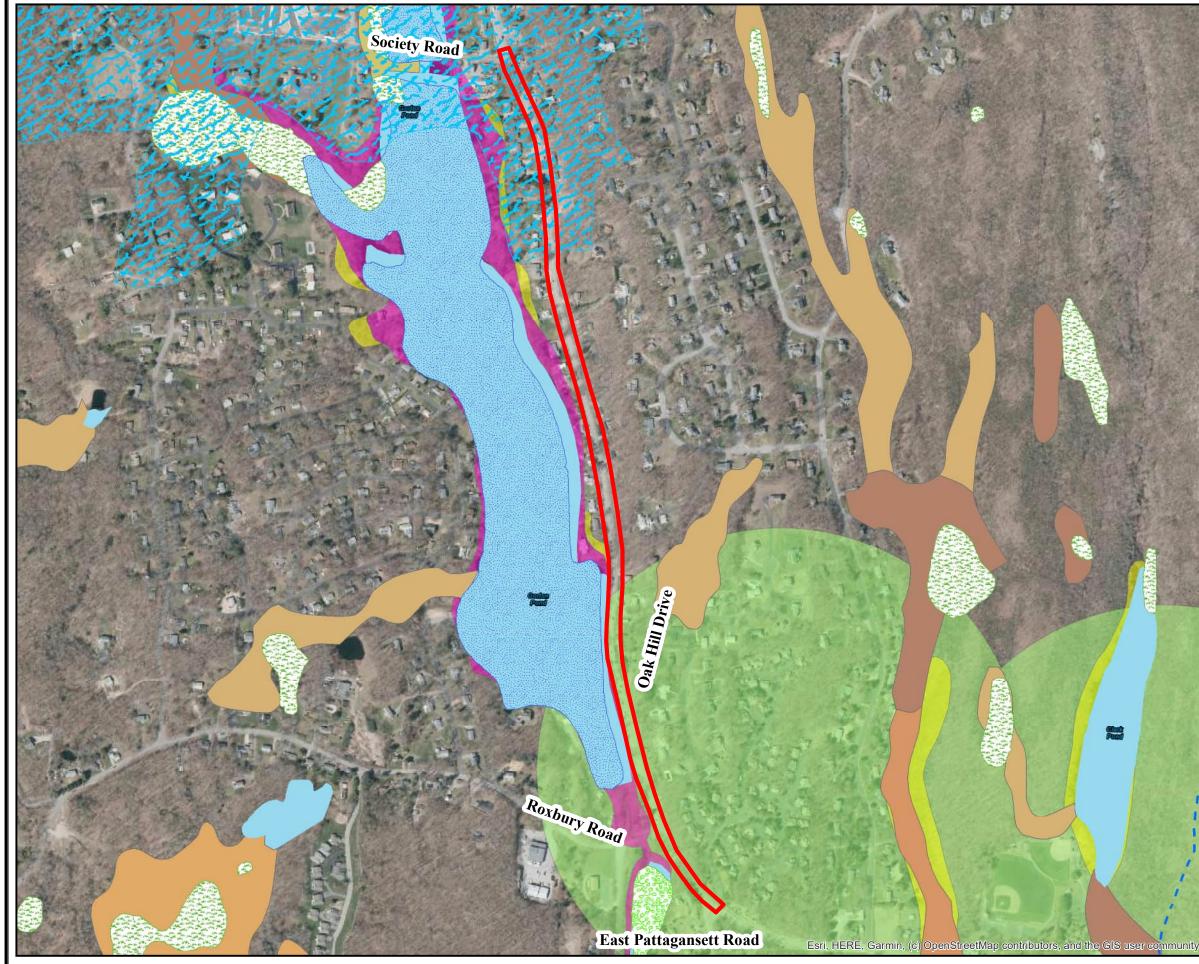
#### National Wetlands Inventory

- Estuarine and Marine Deepwater
- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
- Freshwater Pond


Lake

#### **CTDEP** Wetlands

- Ipswich mucky peat
- Raypol silt loam
- Ridgebury, Leicester, and Whitman soils, extremely stony
- Scarboro muck
- Timakwa and Natchaug soils
- Water


#### FEMA Floodplains

- 0.2% Annual Flood Hazard
- AE



1 inch = 396 feet





# Figure 2c **Environmental Resources Map Segment 3** East Pattagansett Road to Society Road East Lyme, CT

### Legend

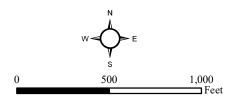
- Site Locus Segment 3
- Aquifer Protection Area
- Coastal Area Boundary
- Natural Diversity Database Area

#### National Wetlands Inventory

- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
- Freshwater Pond

Lake

#### **CTDEP** Wetlands


Raypol silt loam

- Ridgebury, Leicester, and Whitman soils, extremely stony
- Scarboro muck
- Timakwa and Natchaug soils
- Walpole sandy loam
- Water

#### **FEMA Floodplains**

0.2% Annual Flood Hazard

AE



1 inch = 520 feet



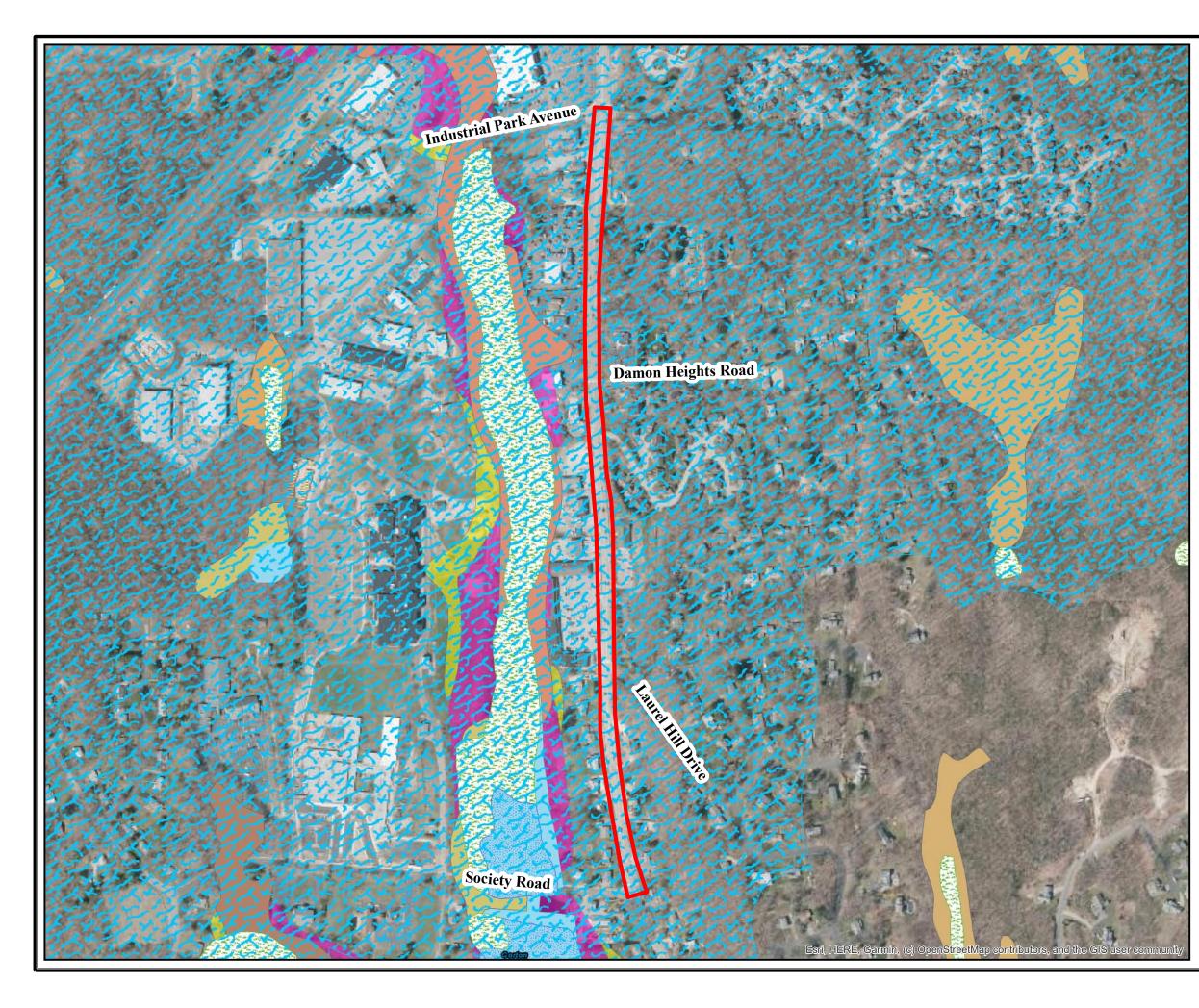



Figure 2d Environmental Resources Map Segment 4 Society Road to Industrial Park Road East Lyme, CT

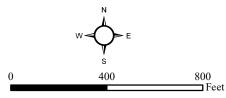
# Legend

- Site Locus Segment 4
- Aquifer Protection Area

#### National Wetlands Inventory

- Freshwater Forested/Shrub Wetland
- Freshwater Pond

Lake


#### **CTDEP** Wetlands

- Ridgebury, Leicester, and Whitman soils, extremely stony
- Rippowam fine sandy loam
- Scarboro muck
- Timakwa and Natchaug soils
- Walpole sandy loam
- Water

## FEMA Floodplains

0.2% Annual Flood Hazard

AE



1 inch = 400 feet



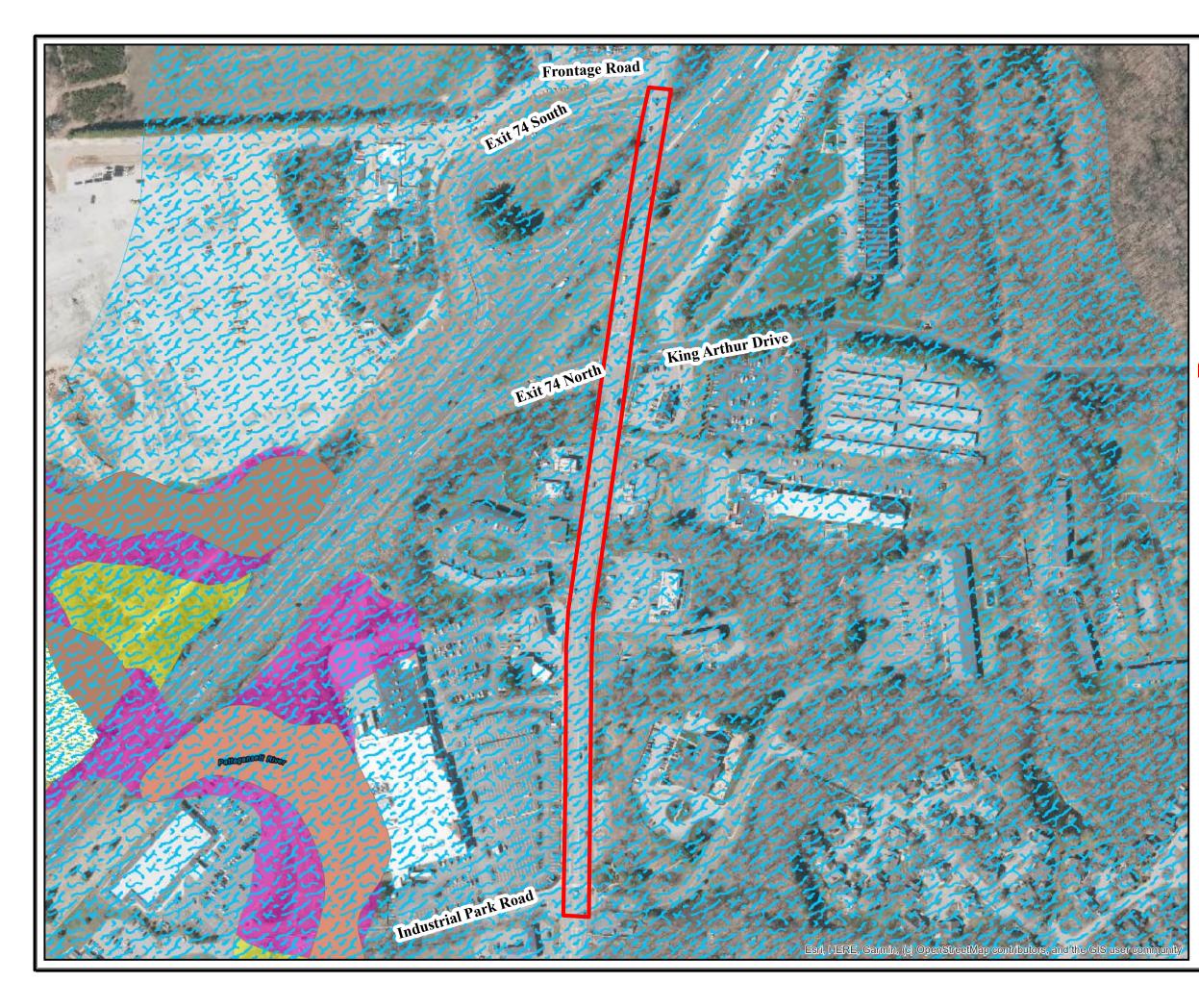
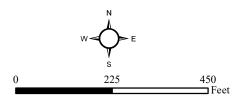



Figure 2e Environmental Resources Map Segment 5 Industrial Park Road to Frontage Road East Lyme, CT

## Legend

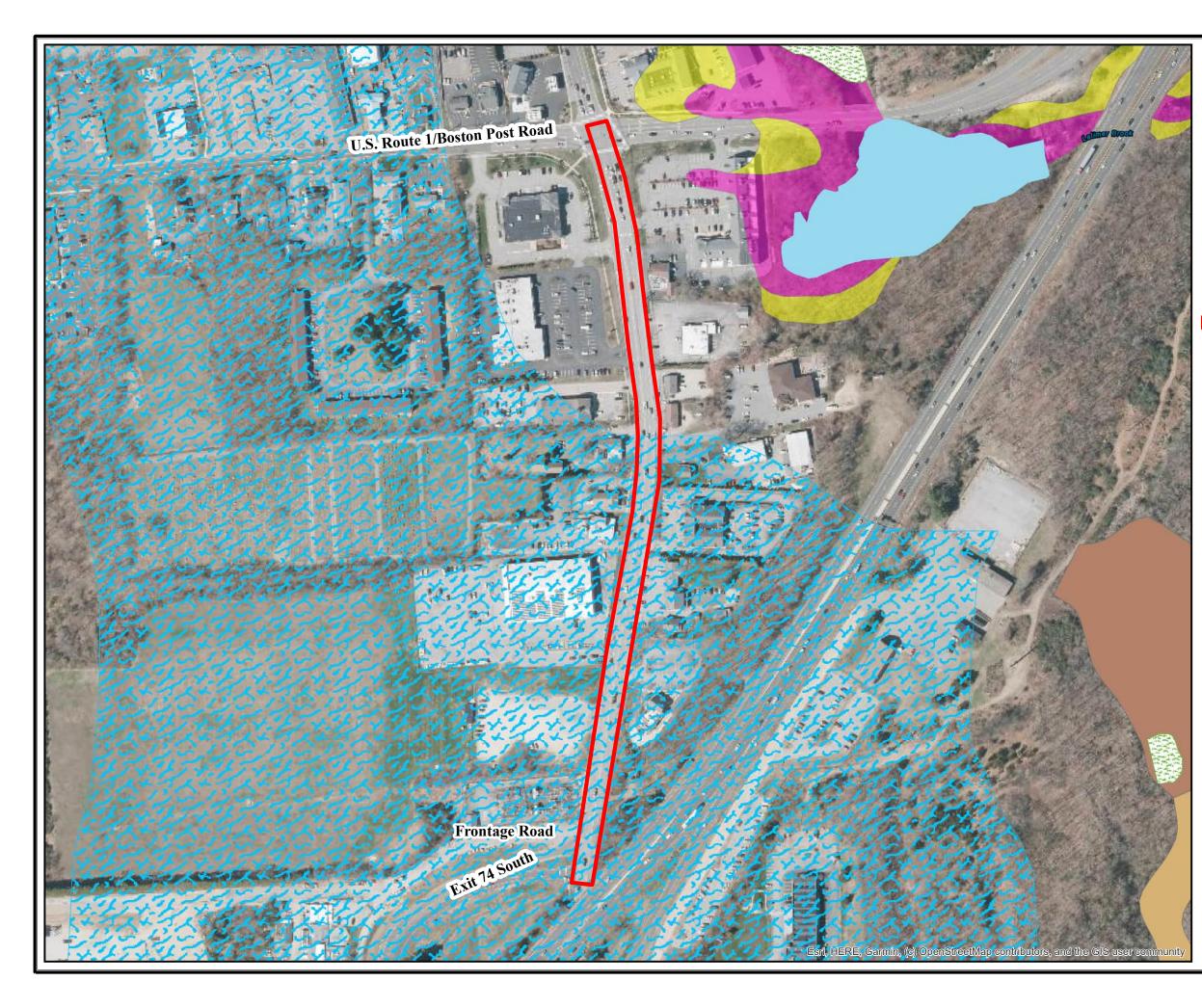
- Site Locus Segment 5
- Aquifer Protection Area

#### National Wetlands Inventory


Freshwater Forested/Shrub Wetland

#### **CTDEP** Wetlands

- **Rippowam fine sandy loam**
- Scarboro muck
- Timakwa and Natchaug soils


#### **FEMA Floodplains**

- 0.2% Annual Flood Hazard
- AE



1 inch = 225 feet





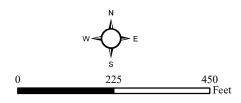
# Figure 2f Environmental Resources Map Segment 6 Frontage Road to U.S. Route 1 East Lyme, CT

# Legend

- Site Locus Segment 6
- C Aquifer Protection Area

#### National Wetlands Inventory

- Freshwater Forested/Shrub Wetland
- Freshwater Pond


#### **CTDEP** Wetlands

- Ridgebury, Leicester, and Whitman soils, extremely stony
- Rippowam fine sandy loam
- Timakwa and Natchaug soils
- Water

#### FEMA Floodplains

0.2% Annual Flood Hazard

AE



1 inch = 225 feet



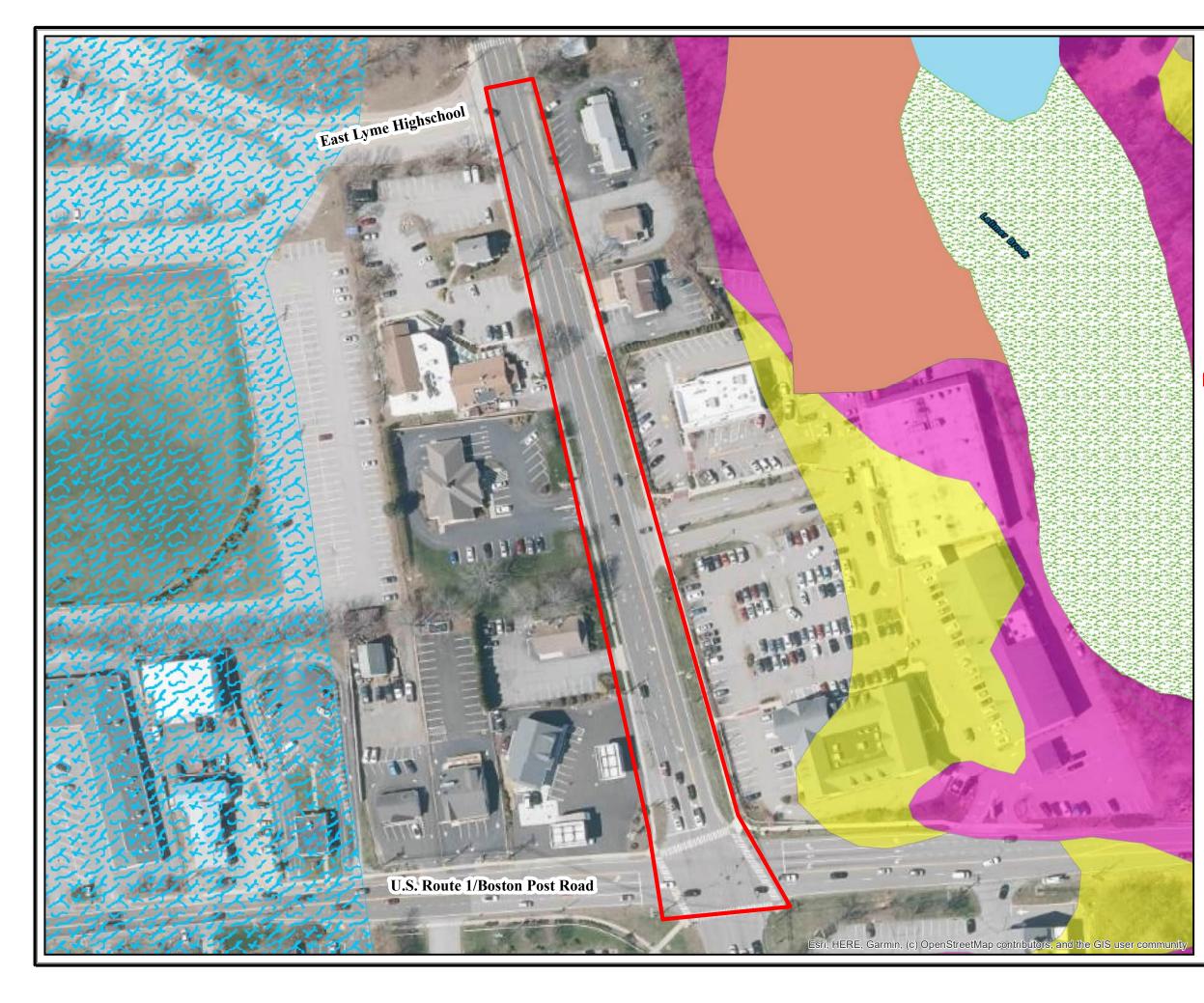



Figure 2g Environmental Resources Map Segment 7 U.S. Route 1 to East Lyme High School East Lyme, CT

#### Legend

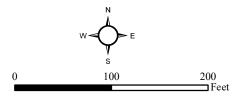
Site Locus - Segment 7

Aquifer Protection Area

#### National Wetlands Inventory

Freshwater Forested/Shrub Wetland

Freshwater Pond

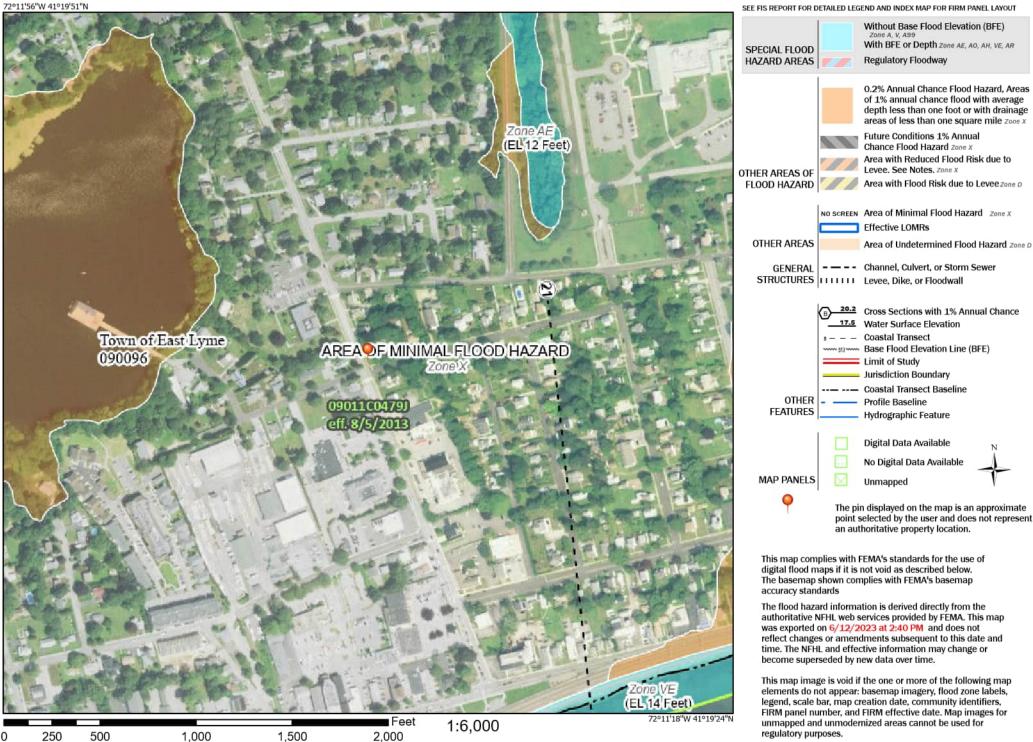

#### **CTDEP** Wetlands

Rippowam fine sandy loam

#### FEMA Floodplains

0.2% Annual Flood Hazard

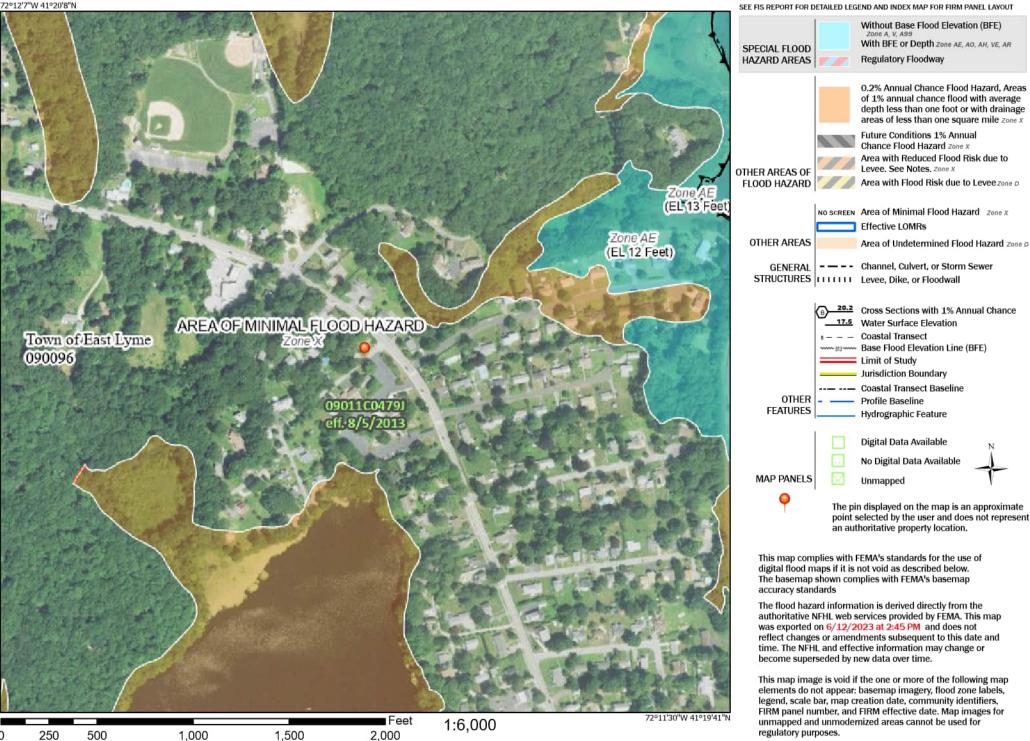
AE




1 inch = 99 feet






#### Legend



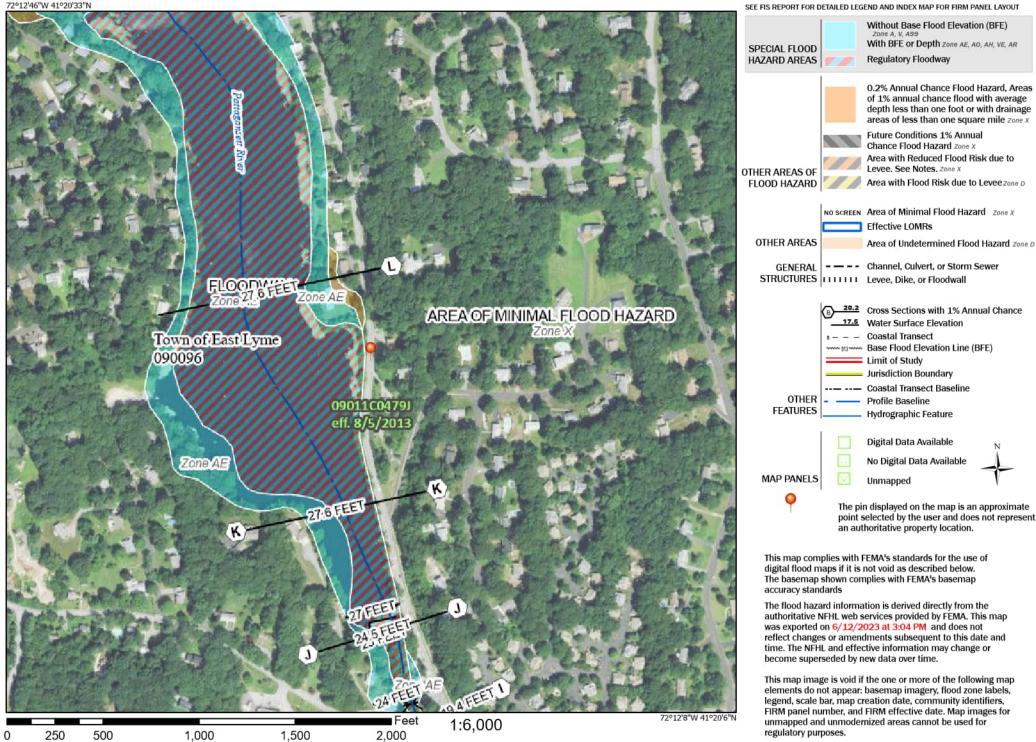
Basemap Imagery Source: USGS National Map 2023




#### Legend



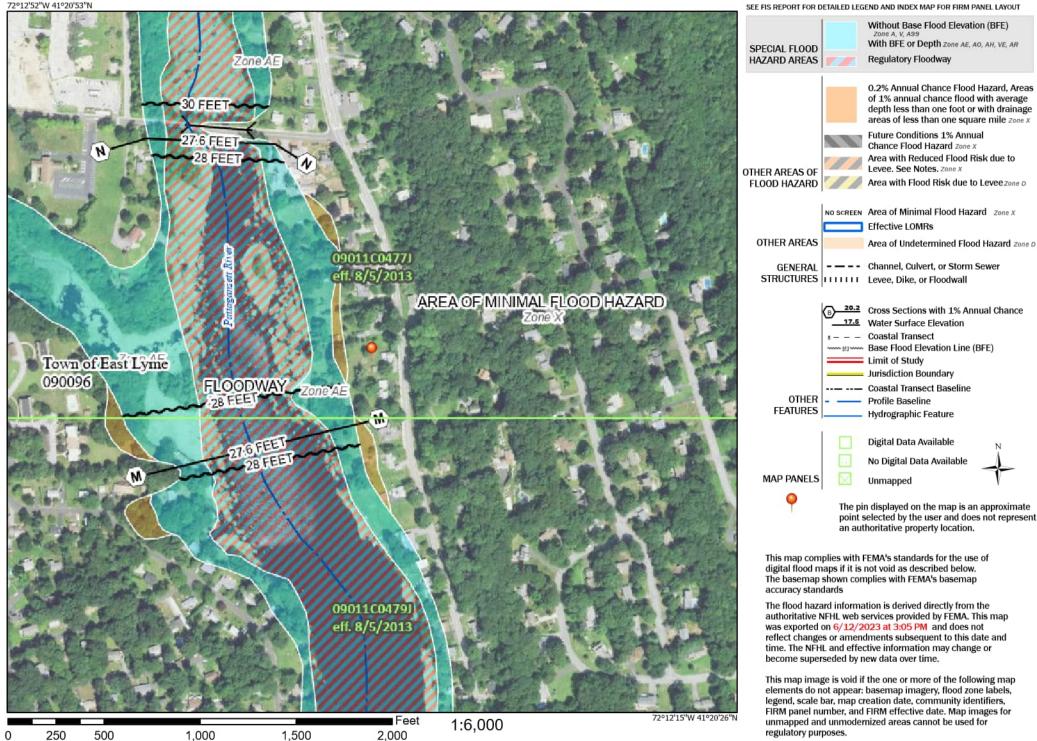
Basemap Imagery Source: USGS National Map 2023




#### Legend



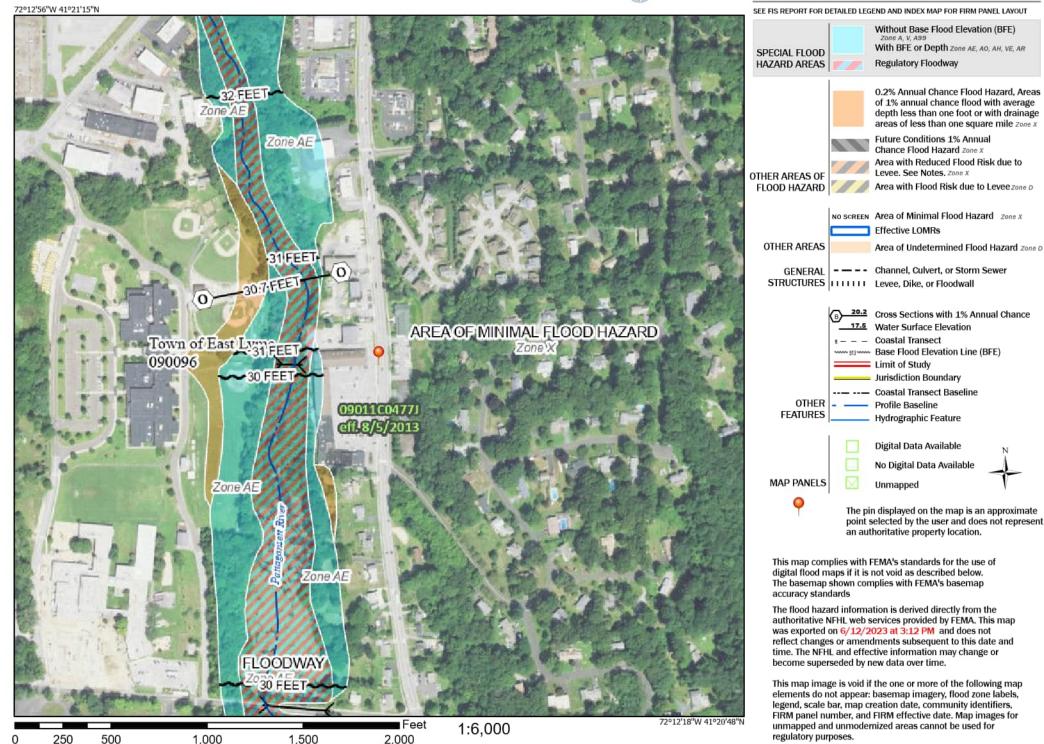



#### Legend



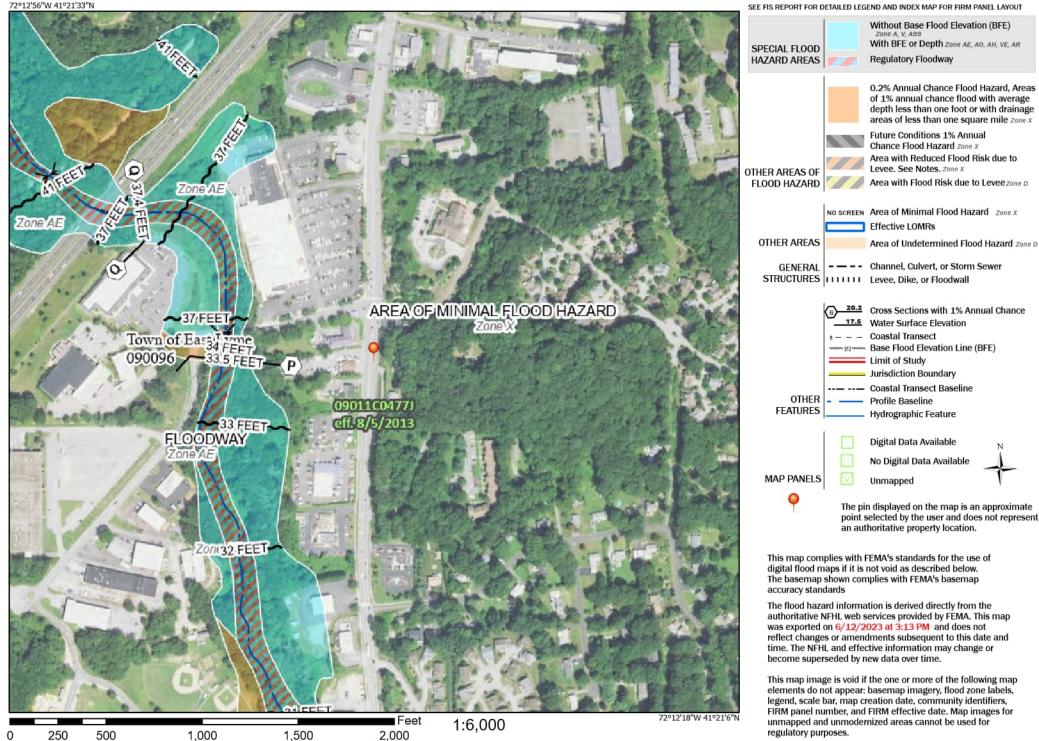
Basemap Imagery Source: USGS National Map 2023




#### Legend

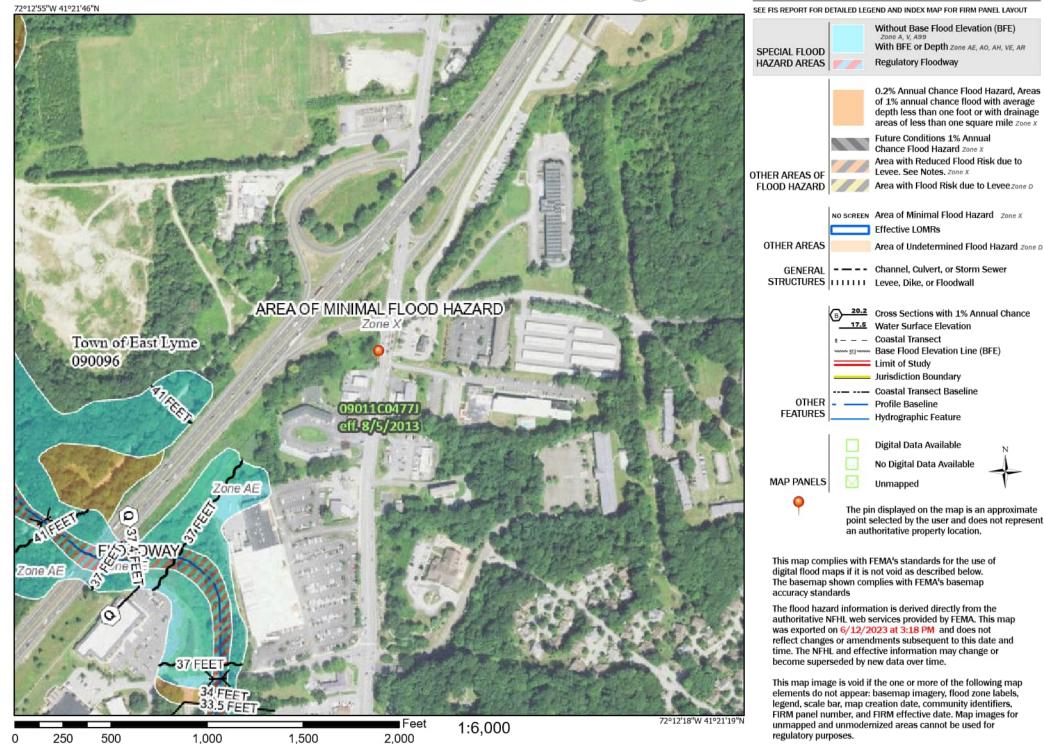


Basemap Imagery Source: USGS National Map 2023



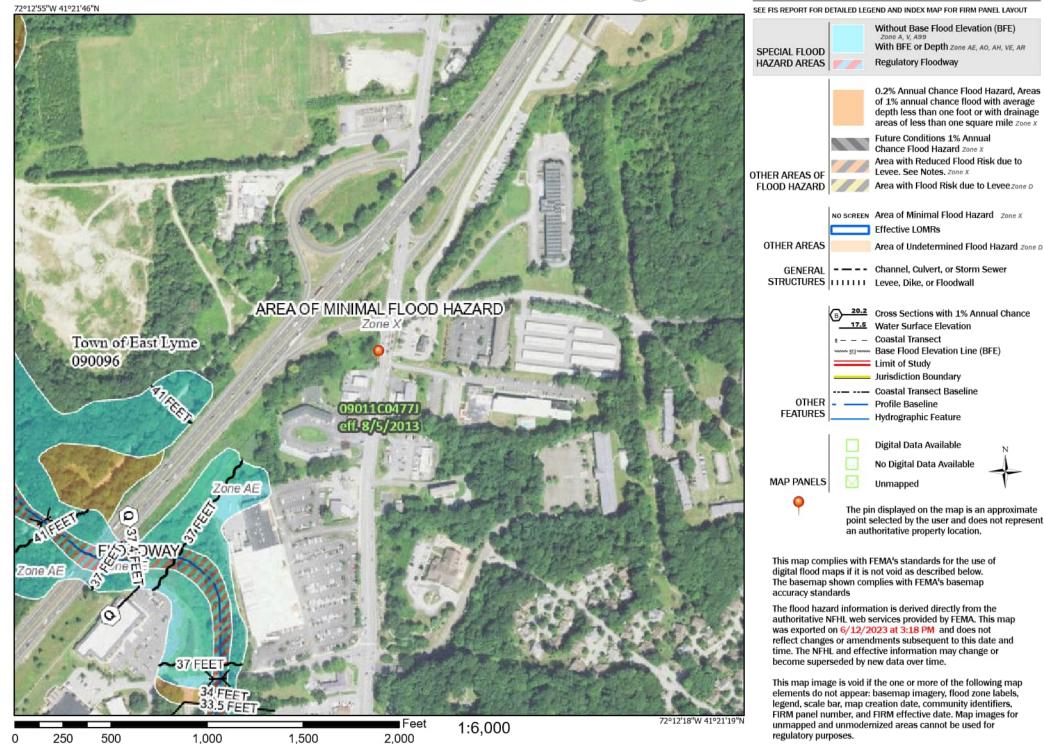

### Legend





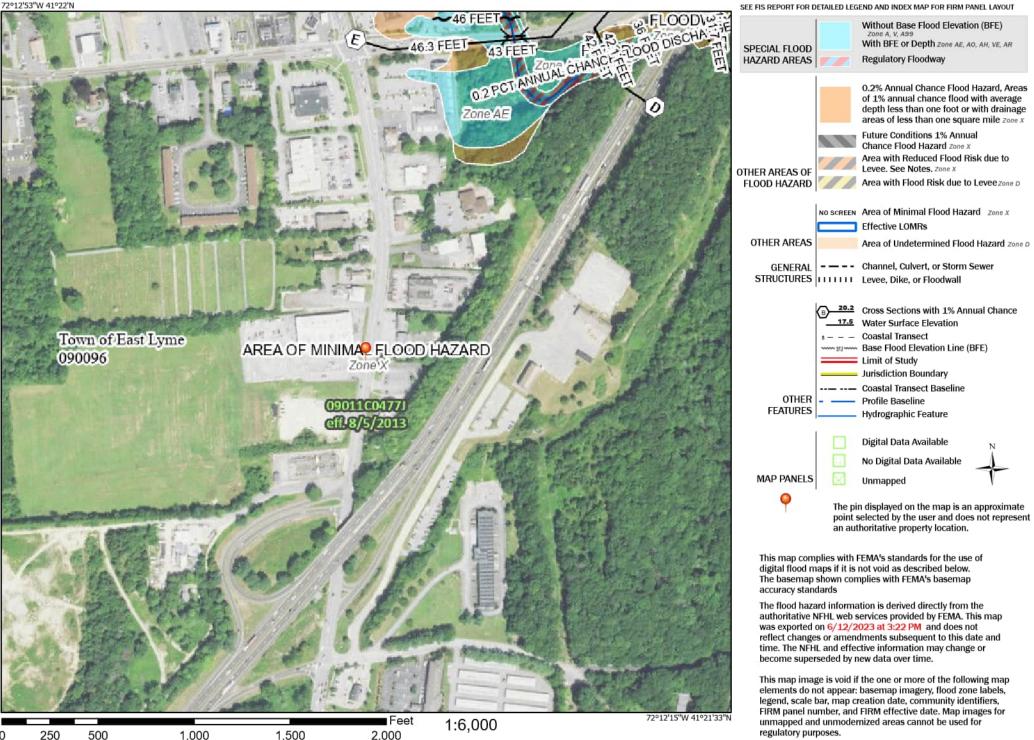

### Legend





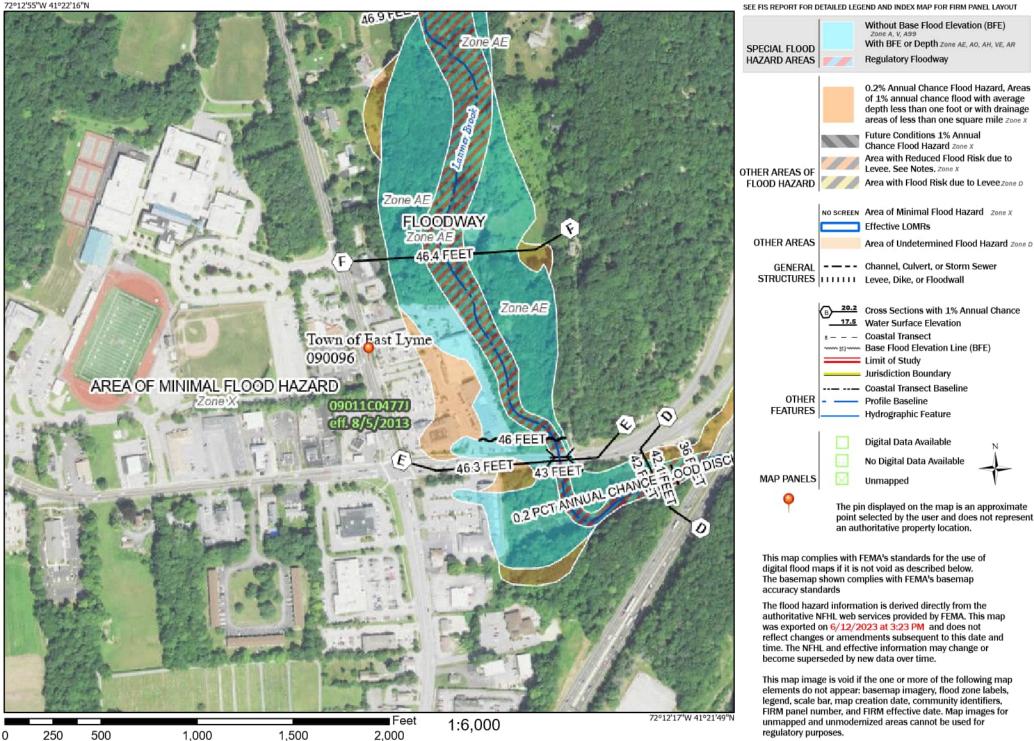

### Legend






### Legend






### Legend





### Legend



# APPENDIX E CONSTRUCTION COST ESTIMATES

## Bike Lanes and Pocket Parking Route 161 - Route 156 (Main Street) to Hope Street Construction Cost Estimate

| oonstruction         | oost Estimate                                    |        |               |                 |    |            |
|----------------------|--------------------------------------------------|--------|---------------|-----------------|----|------------|
| Major and Minor Co   | ontract Items                                    |        |               |                 |    |            |
| Item No.             | Item                                             | Unit   | Quantity      | Unit \$         | -  | Fotal Cost |
| 0202000              | EARTH EXCAVATION                                 | CY     | 720           | \$<br>25.00     | \$ | 18,000.00  |
| 0209001              | FORMATION OF SUBGRADE                            | SY     | 32            | \$<br>3.30      | \$ | 105.60     |
| 0304002              | PROCESSED AGGREGATE BASE                         | CY     | 11            | \$<br>60.00     | \$ | 660.00     |
| 0406170              | HMA S1                                           | TON    | 7             | \$<br>150.00    | \$ | 1,050.00   |
| 0406171              | HMA S0.5                                         | TON    | 7             | \$<br>128.00    | \$ | 896.00     |
| 0406236A             | MATERIAL FOR TACK COAT                           | GAL    | 3             | \$<br>8.00      | \$ | 24.00      |
| 0586600              | RESET CATCH BASIN                                | EA     | 5             | \$<br>1,500.00  | \$ | 7,500.00   |
| 0813012              | 5" X 18" GRANITE STONE CURBING                   | LF     | 140           | \$<br>42.00     | \$ | 5,880.00   |
| 0921001A             | CONCRETE SIDEWALK                                | SF     | 380           | \$<br>14.00     | \$ | 5,320.00   |
| 0921005A             | CONCRETE SIDEWALK RAMP                           | SF     | 285           | \$<br>28.00     | \$ | 7,980.00   |
| 0921048A             | DETECTABLE WARNING STRIP                         | EA     | 2             | \$<br>72.00     |    | 144.00     |
| 0970006A             | TRAFFICPERSON (MUNICIPAL POLICE OFFICER)         | ALL    | 1             | \$<br>12,500.00 | \$ | 12,500.00  |
| 0970007A             | TRAFFICPERSON (UNIFORMED FLAGGER)                | HR     | 80            | \$<br>75.00     | \$ | 6,000.00   |
| Major Items Subtota  | al                                               |        | •             |                 | \$ | 66,060     |
| Minor Items Subtota  | al                                               | 20     | % of Line "A" |                 | \$ | 13,212     |
| Major and Minor Co   | ntract Items Subtotal (A + B)                    |        | •             |                 | \$ | 79,272     |
| Other Item Allowan   | CAS .                                            |        |               |                 |    |            |
|                      | Traffic (suggested 2% - 5%)                      | 2      | % of Line "C" | 1               | \$ | 1,585      |
|                      | n (suggested 4% - 10%)                           | 5      | % of Line "C" |                 | \$ | 3,964      |
|                      | on Staking (suggested 1% - 2%)                   | 1      | % of Line "C" |                 | \$ | 793        |
| Other Items Subtota  |                                                  |        |               |                 | \$ | 6,342      |
| CONTRACT SUBTOT      | AI (C + D)                                       |        |               |                 | \$ | 85,614     |
| Inflation Costs (Sim |                                                  |        |               |                 | Ψ  | 00,011     |
|                      | ovide date of estimate)                          | Mar-23 | 1             |                 |    |            |
|                      | (provide anticipated bid date)                   | War 25 |               |                 |    |            |
| Annual Inflation (4% |                                                  |        |               |                 |    |            |
| Inflation Subtotal   |                                                  | 0.0%   | of Line "E"   |                 | \$ | -          |
| TOTAL CONTRACT C     | OST ESTIMATE (E + F) (Rounded to nearest \$1000) |        |               |                 | \$ | 86,000     |
|                      |                                                  |        |               |                 |    |            |
| LOTCIP Project Costs |                                                  |        |               |                 |    |            |
| Contract Cost Estima | ate (Line "G")                                   |        |               |                 | \$ | 86,000     |
| Contingencies        |                                                  | 25%    |               |                 | \$ | 21,500     |
| Incidentals          |                                                  | 20%    |               |                 | \$ | 17,200     |
| ROW                  |                                                  | LS     |               |                 | \$ | -          |
| Utilities            |                                                  | LS     |               |                 | \$ | -          |
| TOTAL PROJECT COS    | T                                                |        |               |                 | \$ | 124,700    |
| TOTAL PROJECT COS    | Т                                                |        |               |                 | \$ | 124,70     |

### Roundabout Route 161 at East Pattagansett Road Construction Cost Estimate Major and Minor Contract Items

| Major and Minor Con    | tract Items                                           |          |               |                  |    |            |
|------------------------|-------------------------------------------------------|----------|---------------|------------------|----|------------|
| Item No.               | Item                                                  | Unit     | Quantity      | Unit \$          |    | Total Cost |
| 0202000                | EARTH EXCAVATION                                      | CY       | 2470          | \$<br>25.00      | \$ | 61,750.00  |
| 0202529A               | CUT BITUMINOUS CONCRETE PAVEMENT                      | LF       | 150           | \$<br>4.00       |    | 600.00     |
| 0209001                | FORMATION OF SUBGRADE                                 | SY       | 3690          | \$<br>3.40       |    | 12,546.00  |
| 0212000                | SUBBASE                                               | CY       | 1230          | \$<br>52.00      |    | 63,960.00  |
| 0304002                | PROCESSED AGGREGATE BASE                              | CY       | 440           | \$<br>60.00      |    | 26,400.00  |
| 0406170                | HMA S1                                                | TON      | 916           | \$<br>150.00     | \$ | 137,400.00 |
| 0406171                | HMA S0.5                                              | TON      | 628           | \$<br>123.00     |    | 77,244.00  |
| 0406236A               | MATERIAL FOR TACK COAT                                | GAL      | 272           | \$<br>8.00       |    | 2,176.00   |
| 0406999A               | ASPHALT ADJUSTMENT COST                               | EST      | 4             | \$<br>10,000.00  | \$ | 40,000.00  |
| 0601020                | STAMPED CONCRETE                                      | SF       | 3380          | \$<br>27.00      |    | 91,260.00  |
| 0811001                | CONCRETE CURBING                                      | LF       | 3110          | \$<br>42.00      | \$ | 130,620.00 |
| 0921001A               | CONCRETE SIDEWALK                                     | SF       | 5390          | \$<br>14.00      | \$ | 75,460.00  |
| 0921005A               | CONCRETE SIDEWALK RAMP                                | SF       | 425           | \$<br>28.00      | \$ | 11,900.00  |
| 921013                 | CONCRETE DRIVEWAY APRON (AT ROUNDABOUT)               | SF       | 2924          | \$<br>19.00      | \$ | 55,556.00  |
| 0921048A               | DETECTABLE WARNING STRIP                              | EA       | 16            | \$<br>72.00      | \$ | 1,152.00   |
| 0944000A               | FURNISHING AND PLACING TOPSOIL                        | SY       | 1570          | \$<br>7.50       | \$ | 11,775.00  |
| 0950019                | TURF ESTABLISHMENT - LAWN                             | SY       | 1570          | \$<br>3.00       | \$ | 4,710.00   |
| 0970006A               | TRAFFICPERSON (MUNICIPAL POLICE OFFICER)              | ALL      | 1             | \$<br>24,500.00  | \$ | 24,500.00  |
| 0970007A               | TRAFFICPERSON (UNIFORMED FLAGGER)                     | HR       | 137           | \$<br>75.00      | \$ | 10,275.00  |
| 1118012A               | REMOVAL AND/OR RELOCATINO OF TRAFFIC SIGNAL EQUIPMENT | LS       | 1             | \$<br>8,000.00   | \$ | 8,000.00   |
|                        | DRAINAGE IMPROVEMENTS                                 | EST      | 1             | \$<br>160,000.00 | \$ | 160,000.00 |
| Major Items Subtotal   |                                                       |          |               |                  | \$ | 1,007,284  |
| Minor Items Subtotal   |                                                       | 20       | % of Line "A" |                  | \$ | 201,457    |
| Major and Minor Con    | tract Items Subtotal (A + B)                          |          |               |                  | \$ | 1,208,741  |
| Other Item Allowance   | 25                                                    |          |               |                  |    |            |
|                        | affic (suggested 2% - 5%)                             | 2        | % of Line "C" |                  | \$ | 24,175     |
| 0975004 Mobilization   | (suggested 4% - 10%)                                  | 5        | % of Line "C" |                  | \$ | 60,437     |
|                        | Staking (suggested 1% - 2%)                           | 1        | % of Line "C" |                  | \$ | 12,087     |
| Other Items Subtotal   |                                                       |          | •             |                  | \$ | 96,699     |
| CONTRACT SUBTOTAL      | (C + D)                                               |          |               |                  | \$ | 1,305,440  |
| Inflation Costs (Simpl |                                                       |          |               |                  |    | ,,         |
| Date of Estimate (prov |                                                       | Mar-23   | 1             |                  |    |            |
|                        | provide anticipated bid date)                         | 11111 25 |               |                  |    |            |
| Annual Inflation (4% a |                                                       |          |               |                  |    |            |
| Inflation Subtotal     | induity                                               | 0.0%     | of Line "E"   |                  | \$ | -          |
|                        | ST ESTIMATE (E + F) (Rounded to nearest \$1000)       | 01070    |               |                  | \$ | 1,305,000  |
|                        |                                                       |          |               |                  | φ  | 1,303,000  |
| LOTCIP Project Costs   | Summary                                               |          |               |                  |    |            |
| Contract Cost Estimate |                                                       |          |               | <br>             | \$ | 1,305,000  |
| Contingencies          |                                                       | 25%      |               |                  | \$ | 326,250    |
| Incidentals            |                                                       | 10%      |               |                  | \$ | 130,500    |
| ROW                    |                                                       | LS       |               |                  | \$ | -          |
| Utilities              |                                                       | LS       |               |                  | \$ | -          |
| TOTAL PROJECT COST     |                                                       |          |               |                  | \$ | 1,761,750  |
| .0                     |                                                       |          |               |                  | Ψ  | 1,101,100  |

## Shared Used Path and Retaining Walls Route 161 at Gorton Pond Construction Cost Estimate

| Major and Minor Con    | tract Items                                     |          |               |                  |    |            |
|------------------------|-------------------------------------------------|----------|---------------|------------------|----|------------|
| Item No.               | Item                                            | Unit     | Quantity      | Unit \$          | -  | Total Cost |
| 0202000                | EARTH EXCAVATION                                | СҮ       | 680           | \$<br>25.00      | \$ | 17,000.00  |
| 0201009                | REMOVAL OF TREE - 12" TO 24" CALIPER            | EA       | 11            | \$<br>1,200.00   | \$ | 13,200.00  |
| 0601445A               | EMBANKMENT WALL                                 | LS       | 1             | \$<br>900,000.00 | \$ | 900,000.00 |
| 0686000.XXX            | CULVERT HEADWALL REBUILT                        | EA       | 3             | \$<br>10,000.00  | \$ | 30,000.00  |
| 0905002                | REBUILD STONE WALL                              | LF       | 95            | \$<br>86.00      | \$ | 8,170.00   |
| 0921001A               | CONCRETE SIDEWALK                               | SF       | 16960         | \$<br>14.00      | \$ | 237,440.00 |
| 0921005A               | CONCRETE SIDEWALK RAMP                          | SF       | 125           | \$<br>28.00      | \$ | 3,500.00   |
| 0921048A               | DETECTABLE WARNING STRIP                        | EA       | 2             | \$<br>72.00      | \$ | 144.00     |
| 0922501                | BITUMINOUS CONCRETE DRIVEWAY                    | SY       | 28            | \$<br>65.00      | \$ | 1,820.00   |
| 0944000A               | FURNISHING AND PLACING TOPSOIL                  | SY       | 560           | \$<br>7.50       | \$ | 4,200.00   |
| 0950019                | TURF ESTABLISHMENT - LAWN                       | SY       | 560           | \$<br>3.00       | \$ | 1,680.00   |
| 0970006A               | TRAFFICPERSON (MUNICIPAL POLICE OFFICER)        | ALL      | 1             | \$<br>12,500.00  | \$ | 12,500.00  |
| 0970007A               | TRAFFICPERSON (UNIFORMED FLAGGER)               | HR       | 80            | \$<br>75.00      | \$ | 6,000.00   |
| Major Items Subtotal   | •                                               | •        | •             |                  | \$ | 1,235,654  |
| Minor Items Subtotal   |                                                 | 20       | % of Line "A" |                  | \$ | 247,131    |
| Major and Minor Con    | tract Items Subtotal (A + B)                    |          |               |                  | \$ | 1,482,785  |
| Other Item Allowance   |                                                 |          |               |                  |    |            |
|                        | raffic (suggested 2% - 5%)                      | 2        | % of Line "C" | 1                | \$ | 29,656     |
|                        | (suggested 4% - 10%)                            | 5        | % of Line "C" |                  | \$ | 74,139     |
|                        | Staking (suggested 1% - 2%)                     | 1        | % of Line "C" |                  | \$ | 14,828     |
| Other Items Subtotal   |                                                 |          |               |                  | \$ | 118,623    |
| CONTRACT SUBTOTAL      | $((\cdot + D))$                                 |          |               |                  | \$ | 1,601,408  |
| Inflation Costs (Simp  |                                                 |          |               |                  | Ψ  | 1,001,400  |
| Date of Estimate (prov |                                                 | Mar-23   | 1             |                  |    |            |
|                        | provide anticipated bid date)                   | Ividi-23 |               |                  |    |            |
| Annual Inflation (4% a |                                                 |          |               |                  |    |            |
| Inflation Subtotal     | initiality)                                     | 0.0%     | of Line "E"   |                  | \$ | -          |
|                        | ST ESTIMATE (E + F) (Rounded to nearest \$1000) |          |               |                  | \$ | 1,601,000  |
|                        |                                                 |          |               |                  | Ψ  | 1,001,000  |
| LOTCIP Project Costs   | Summary                                         |          |               |                  |    |            |
| Contract Cost Estimate | e (Line "G")                                    |          |               |                  | \$ | 1,601,000  |
| Contingencies          |                                                 | 25%      |               |                  | \$ | 400,250    |
| ncidentals             |                                                 | 20%      |               |                  | \$ | 320,200    |
| ROW                    |                                                 | LS       |               |                  | \$ | -          |
| Utilities              |                                                 | LS       |               |                  | \$ | 6,000      |
| TOTAL PROJECT COST     |                                                 |          |               |                  | \$ | 2,327,450  |

### Shared Use Path, Bus Shelters, and Pedestrian Refuge Island Route 161 - Frontage Road to U.S. Route 1 (Boston Post Road) Construction Cost Estimate Major and Minor Contract Items

| Major and Minor Contr                              | ract Items                                     |          |               |                 |    |            |
|----------------------------------------------------|------------------------------------------------|----------|---------------|-----------------|----|------------|
| Item No.                                           | Item                                           | Unit     | Quantity      | Unit \$         | -  | Total Cost |
| 0202000                                            | EARTH EXCAVATION                               | CY       | 710           | \$<br>25.00     | \$ | 17,750.00  |
| 0202529A                                           | CUT BITUMINOUS CONCRETE PAVEMENT               | LF       | 310           | \$<br>4.00      | \$ | 1,240.00   |
| 0209001                                            | FORMATION OF SUBGRADE                          | SY       | 245           | \$<br>3.40      | \$ | 833.00     |
| 0212000                                            | SUBBASE                                        | CY       | 80            | \$<br>52.00     |    | 4,160.00   |
| 0304002                                            | PROCESSED AGGREGATE BASE                       | CY       | 45            | \$<br>60.00     | \$ | 2,700.00   |
| 0406170                                            | HMA S1                                         | TON      | 85            | \$<br>150.00    | \$ | 12,750.00  |
| 0406171                                            | HMA S0.5                                       | TON      | 60            | \$<br>123.00    | \$ | 7,380.00   |
| 0406236A                                           | MATERIAL FOR TACK COAT                         | GAL      | 25            | \$<br>8.00      | \$ | 200.00     |
| 0406999A                                           | ASPHALT ADJUSTMENT COST                        | EST      | 1             | \$<br>10,000.00 |    | 10,000.00  |
| 0601020                                            | STAMPED CONCRETE                               | SF       | 590           | \$<br>27.00     | \$ | 15,930.00  |
| 0811001                                            | CONCRETE CURBING                               | LF       | 490           | \$<br>42.00     | _  | 20,580.00  |
| 0921001A                                           | CONCRETE SIDEWALK                              | SF       | 1830          | \$<br>14.00     |    | 25,620.00  |
| 0922001                                            | BITUMINOUS CONCRETE SIDEWALK                   | SY       | 1370          | \$<br>61.00     |    | 83,570.00  |
| 0922501                                            | BITUMINOUS CONCRETE DRIVEWAY                   | SY       | 465           | \$<br>67.00     |    | 31,155.00  |
| 0921048A                                           | DETECTABLE WARNING STRIP                       | EA       | 6             | \$<br>72.00     |    | 432.00     |
| 0944000A                                           | FURNISHING AND PLACING TOPSOIL                 | SY       | 1190          | \$<br>7.50      | \$ | 8,925.00   |
| 0947303                                            | BUS SHELTER - TYPE - A                         | EA       | 2             | \$<br>33,000.00 | \$ | 66,000.00  |
| 0950019                                            | TURF ESTABLISHMENT - LAWN                      | SY       | 1190          | \$<br>3.00      |    | 3,570.00   |
| 0970006A                                           | TRAFFICPERSON (MUNICIPAL POLICE OFFICER)       | ALL      | 1             | \$<br>24,500.00 |    | 24,500.00  |
| 0970007A                                           | TRAFFICPERSON (UNIFORMED FLAGGER)              | HR       | 137           | \$<br>75.00     |    | 10,275.00  |
| TRAFFIC SIGNAL                                     | TRAFFIC SIGNAL MODIFICATIONS                   | EST      | 1             | \$<br>80,000.00 | \$ | 80,000.00  |
| DRAINAGE                                           | DRAINAGE                                       | EST      | 1             | \$<br>15,500.00 | \$ | 15,500.00  |
| Major Items Subtotal                               |                                                |          |               |                 | \$ | 443,070    |
| Minor Items Subtotal                               |                                                | 20       | % of Line "A" |                 | \$ | 88,614     |
| Major and Minor Conti                              | ract Items Subtotal (A + B)                    |          |               |                 | \$ | 531,684    |
| Other Item Allowances                              |                                                |          |               |                 |    |            |
| 0971001A M & P of Tra                              | ffic (suggested 2% - 5%)                       | 2        | % of Line "C" | 1               | \$ | 10,634     |
| 0975004 Mobilization (                             |                                                | 5        | % of Line "C" |                 | \$ | 26,584     |
| 0980001 Construction                               | Staking (suggested 1% - 2%)                    | 1        | % of Line "C" |                 | \$ | 5,317      |
| Other Items Subtotal                               |                                                |          | •             |                 | \$ | 42,535     |
| CONTRACT SUBTOTAL                                  | (C + D)                                        |          |               |                 | \$ | 574,219    |
|                                                    |                                                |          |               |                 | +  |            |
| Inflation Costs (Simple<br>Date of Estimate (provi |                                                | Mar-23   | 7             |                 |    |            |
| N                                                  | rovide anticipated bid date)                   | 10141-23 |               |                 |    |            |
| Annual Inflation (4% an                            |                                                |          |               |                 |    |            |
| Inflation Subtotal                                 | nuary,                                         | 0.0%     | of Line "E"   |                 | \$ |            |
|                                                    | T ESTIMATE (E + F) (Rounded to nearest \$1000) | 0.076    |               |                 | \$ | 574,000    |
| TOTAL CONTRACT COS                                 |                                                |          |               |                 | ¢  | 574,000    |
| LOTCIP Project Costs Su                            | ummary                                         |          |               |                 |    |            |
| Contract Cost Estimate                             |                                                |          |               |                 | \$ | 574,000    |
| Contingencies                                      |                                                | 25%      |               |                 | \$ | 143,500    |
| Incidentals                                        |                                                | 10%      |               |                 | \$ | 57,400     |
| ROW                                                |                                                | LS       |               |                 | \$ | -          |
| Utilities                                          |                                                | LS       |               |                 | \$ | -          |
| TOTAL PROJECT COST                                 |                                                |          |               |                 | \$ | 774,900    |
|                                                    |                                                |          |               |                 |    |            |

# APPENDIX F BICYCLE & PEDESTRIAN FUNDING OPPORTUNITIES

## Pedestrian and Bicycle Funding Opportunities: U.S. Department of Transportation Transit, Safety, and Highway Funds

September 9, 2022

This table indicates potential eligibility for pedestrian and bicycle activities and projects under U.S. Department of Transportation surface transportation funding programs. Activities and projects need to meet program eligibility requirements. See notes and basic program requirements below, with links to program information. Project sponsors should integrate the safety, accessibility, equity, and convenience of walking and bicycling into surface transportation projects.

|                                                                                                                                                        | Pedestrian and Bicycle Funding Opportunities: U.S. Department of Transportation Transit, Safety, and Highway Funds         Key: \$ = Activity may be eligible. Restrictions may apply, see program notes and guidance. ~\$ = Eligible, but not competitive unless part of a larger project.         OST Programs       Federal Transit       NHTSA       Federal Highway Administration |       |     |      |               |             |       |     |     |            |             |            |            |                   |             |      |      |             |             |             |             |           |       |               |      |        |       |            |              |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|------|---------------|-------------|-------|-----|-----|------------|-------------|------------|------------|-------------------|-------------|------|------|-------------|-------------|-------------|-------------|-----------|-------|---------------|------|--------|-------|------------|--------------|--|--|--|
|                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                         |       |     |      |               |             |       |     |     |            |             |            |            |                   |             |      |      |             |             |             |             |           | inist | ration        | l    |        |       |            |              |  |  |  |
| Activity or Project Type                                                                                                                               | <u>RAISE</u>                                                                                                                                                                                                                                                                                                                                                                            | INFRA | RCP | SS4A | <u>Thrive</u> | <u>RRIF</u> | TIFIA | FTA | ATI | <u>TOD</u> | <u>AoPP</u> | <u>402</u> | <u>405</u> | BFP CI            | <u>RP C</u> | CMAQ | HSIP | <u>RHCP</u> | <u>NHPP</u> |             | <u>STBG</u> | <u>TA</u> | RTI   | <u>P SRTS</u> | PLAN | I NSBP | FLTTF | <u>TTP</u> | <u>TTPSF</u> |  |  |  |
|                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                         |       |     |      |               |             |       |     |     |            |             |            |            | <u>BIP</u><br>BRR |             |      |      |             |             | <u>TECT</u> |             |           |       |               |      |        |       |            |              |  |  |  |
| Access enhancements to public transportation (benches, bus pads)                                                                                       | \$                                                                                                                                                                                                                                                                                                                                                                                      | \$    | \$  | \$   |               | ~\$         | ~\$   | \$  | \$  |            | ~\$         |            |            | S                 | 6           | \$   |      |             | \$          | \$          | \$          | \$        |       |               |      | \$     | \$    | \$         |              |  |  |  |
| Americans with Disabilities Act (ADA)/504 Self Evaluation / Transition Plan                                                                            |                                                                                                                                                                                                                                                                                                                                                                                         |       |     | \$   | TA            |             |       |     |     | \$         | \$          |            |            | S                 | 6           |      |      |             |             |             | \$          | \$        | \$    |               | \$   |        | \$    | \$         |              |  |  |  |
| Barrier removal for ADA compliance                                                                                                                     | \$                                                                                                                                                                                                                                                                                                                                                                                      | \$    | \$  | \$   |               | ~\$         | ~\$   | \$  | \$  | ~\$        | ~\$         |            |            | \$ 5              | 5           |      |      |             | \$          | \$          | \$          | \$        | \$    | \$            |      | \$     | \$    | \$         |              |  |  |  |
| Bicycle plans                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                         |       | ~\$ | \$   |               |             |       | \$  |     | \$         | \$          |            |            | 5                 | 5           |      |      |             |             | \$          | \$          | \$        |       | \$            | \$   |        | \$    | \$         | \$           |  |  |  |
| Bicycle helmets (project or training related)                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                         |       |     |      |               |             |       |     |     |            |             | \$         |            |                   |             |      |      |             |             |             | \$          | \$SRTS    | 5     | \$            |      |        |       | \$         |              |  |  |  |
| Bicycle helmets (safety promotion)                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                         |       |     |      |               |             |       |     |     |            |             |            |            |                   |             |      |      |             |             |             | \$          | \$SRTS    | 5     | \$            |      |        |       | \$         |              |  |  |  |
| Bicycle lanes on road                                                                                                                                  | ~\$                                                                                                                                                                                                                                                                                                                                                                                     | ~\$   | \$  | \$   |               | ~\$         | ~\$   | \$  | \$  |            | ~\$         |            |            | 9                 | 5           | \$   | \$   | \$          | \$          | \$          | \$          | \$        |       | \$            |      |        | \$    | \$         | \$           |  |  |  |
| Bicycle parking (see Bicycle Parking Solutions)                                                                                                        | ~\$                                                                                                                                                                                                                                                                                                                                                                                     | ~\$   | \$  | \$   |               | ~\$         | \$    | \$  | \$  |            | ~\$         |            |            | 9                 | 5           | \$   |      |             | \$          |             | \$          | \$        | \$    | \$            |      | \$     | \$    | \$         |              |  |  |  |
| Bike racks on transit                                                                                                                                  | ~\$                                                                                                                                                                                                                                                                                                                                                                                     |       | \$  | ~\$  |               |             | ~\$   | \$  | \$  |            | ~\$         |            |            | 5                 | 5           | \$   |      |             |             |             | \$          | \$        |       |               |      |        | \$    | \$         |              |  |  |  |
| Bicycle repair station (air pump, simple tools)                                                                                                        | ~\$                                                                                                                                                                                                                                                                                                                                                                                     |       | \$  | ~\$  |               | ~\$         | ~\$   | \$  | \$  |            |             |            |            | 5                 | 5           |      |      |             |             |             | \$          | \$        |       |               |      |        | \$    | \$         |              |  |  |  |
| Bicycle share (capital and equipment; not operations)                                                                                                  | ~\$                                                                                                                                                                                                                                                                                                                                                                                     | ~\$   | \$  | ~\$  |               | ~\$         | ~\$   | \$  | \$  |            |             |            |            | 5                 | 5           | \$   |      |             | \$          |             | \$          | \$        |       |               |      |        | \$    | \$         |              |  |  |  |
| Bicycle storage or service centers (example: at transit hubs)                                                                                          | ~\$                                                                                                                                                                                                                                                                                                                                                                                     |       | \$  | ~\$  |               | ~\$         | \$    | \$  | \$  |            |             |            |            | 5                 | 5           | \$   |      |             |             |             | \$          | \$        |       |               |      |        | \$    | \$         |              |  |  |  |
| Bridges / overcrossings for pedestrians and/or bicyclists                                                                                              | \$                                                                                                                                                                                                                                                                                                                                                                                      | \$    | \$  | \$   |               | ~\$         | ~\$   | \$  | \$  |            |             |            |            | \$ 5              | 5           | \$   | \$   | \$          | \$          | \$          | \$          | \$        | \$    | \$            |      |        | \$    | \$         | \$           |  |  |  |
| Bus shelters and benches                                                                                                                               | \$                                                                                                                                                                                                                                                                                                                                                                                      | \$    | \$  | ~\$  |               | ~\$         | ~\$   | \$  | \$  |            |             |            |            | 5                 | 5           | \$   |      |             | \$          | \$          | \$          | \$        |       |               |      | \$     | \$    | \$         |              |  |  |  |
| Coordinator positions (State or local) (limits on CMAQ and STBG)                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                         |       |     | \$   |               |             |       |     |     |            | \$          |            |            |                   |             | \$   |      |             |             |             | \$          | \$SRTS    | 5     | \$            |      |        |       | \$         |              |  |  |  |
| Community Capacity Building (develop organizational skills/processes)                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                         |       |     | \$   | TA            |             |       |     |     | \$         | \$          |            |            |                   |             |      |      |             |             |             |             |           |       |               | \$   |        |       | \$         |              |  |  |  |
| Crosswalks for pedestrians, pedestrian refuge islands (new or retrofit)                                                                                | \$                                                                                                                                                                                                                                                                                                                                                                                      | \$    | \$  | \$   |               | ~\$         | ~\$   | \$  | \$  |            |             |            |            | 5                 | 5           | ~\$  | \$   | \$          | \$          | \$          | \$          | \$        | \$    | \$            |      | \$     | \$    | \$         | \$           |  |  |  |
| Curb ramps                                                                                                                                             | \$                                                                                                                                                                                                                                                                                                                                                                                      | \$    | \$  | \$   |               | ~\$         | ~\$   | \$  | \$  |            |             |            |            | \$ 5              | 5           | ~\$  | \$   | \$          | \$          | \$          | \$          | \$        | \$    | \$            |      | \$     | \$    | \$         | \$           |  |  |  |
| Counting equipment                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                         | \$    | \$  | \$   |               |             | ~\$   | \$  | \$  |            |             |            |            |                   |             |      | \$   |             | \$          |             | \$          | \$        | \$    | \$            | \$   |        | \$    | \$         | \$           |  |  |  |
| Data collection and monitoring for pedestrians and/or bicyclists                                                                                       | \$                                                                                                                                                                                                                                                                                                                                                                                      | \$    | \$  | \$   |               |             | ~\$   | \$  | \$  | \$         | \$          |            |            | 5                 | 5           |      | \$   |             | \$          |             | \$          | \$        | \$    | \$            | \$   |        | \$    | \$         | \$           |  |  |  |
| Emergency and evacuation routes for pedestrians and/or bicyclists                                                                                      | \$                                                                                                                                                                                                                                                                                                                                                                                      | \$    | \$  | ~\$  |               |             | \$    | \$  | \$  | ~\$        | ~\$         |            |            | 5                 | 5           |      |      |             | \$          | \$          | \$          | \$        | \$    | \$            |      |        | \$    | \$         |              |  |  |  |
| Historic preservation (pedestrian and bicycle and transit facilities)                                                                                  | ~\$                                                                                                                                                                                                                                                                                                                                                                                     |       | ~\$ | ~\$  |               | ~\$         | ~\$   | \$  | \$  |            | ~\$         |            |            | 5                 | 5           |      |      |             |             |             | \$          | \$        |       |               |      | \$     | \$    | \$         |              |  |  |  |
| Landscaping, streetscaping (pedestrian/bicycle route; transit access);<br>related amenities (benches, water fountains); usually part of larger project | ~\$                                                                                                                                                                                                                                                                                                                                                                                     | ~\$   | ~\$ | ~\$  |               | ~\$         | ~\$   | \$  | \$  | ~\$        | ~\$         |            |            | S                 | 6           |      |      |             | ~\$         | \$          | \$          | \$        |       |               |      |        | \$    | \$         |              |  |  |  |
| Lighting (pedestrian and bicyclist scale associated with pedestrian/bicyclist project)                                                                 | \$                                                                                                                                                                                                                                                                                                                                                                                      | \$    | \$  | \$   |               | ~\$         | ~\$   | \$  | \$  |            | ~\$         |            |            | 5                 | 5           | ~\$  | \$   | \$          | \$          | \$          | \$          | \$        | \$    | \$            |      | \$     | \$    | \$         | \$           |  |  |  |
| Maps (for pedestrians and/or bicyclists)                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                         |       |     | \$   |               |             |       | \$  | \$  | \$         | ~\$         |            |            | 3                 | 5           | \$   |      |             |             |             | \$          | \$        |       | \$            | \$   | \$     |       | \$         |              |  |  |  |
| Micromobility projects (including scooter share)                                                                                                       | \$                                                                                                                                                                                                                                                                                                                                                                                      |       | \$  | ~\$  |               | ~\$         | ~\$   |     |     |            | ~\$         |            |            | 3                 | 5           | \$   |      |             |             |             | \$          | \$        |       |               |      |        | \$    | \$         |              |  |  |  |
| Paved shoulders for pedestrian and/or bicyclist use                                                                                                    | \$                                                                                                                                                                                                                                                                                                                                                                                      | ~\$   | \$  | \$   |               | ~\$         | ~\$   |     |     |            |             |            |            | \$ 5              | 5           | \$   | \$   | \$          | \$          | \$          | \$          | \$        |       | \$            |      | \$     | \$    | \$         | \$           |  |  |  |
| Pedestrian plans                                                                                                                                       | \$                                                                                                                                                                                                                                                                                                                                                                                      | ~\$   | ~\$ | \$   |               |             |       | \$  |     | \$         | \$          |            |            | 5                 | 5           |      |      |             |             | \$          | \$          | \$        |       | \$            | \$   |        | \$    | \$         | \$           |  |  |  |
| Rail at-grade crossings                                                                                                                                | \$                                                                                                                                                                                                                                                                                                                                                                                      | \$    | \$  | ~\$  |               | \$          | \$    | \$  | \$  |            |             |            |            | 5                 | 5           |      | \$   | \$          | \$          | \$          | \$          | \$        | \$    | \$            |      |        | \$    | \$         | \$           |  |  |  |
| Recreational trails                                                                                                                                    | \$                                                                                                                                                                                                                                                                                                                                                                                      |       | \$  | ~\$  |               |             | ~\$   |     |     |            |             |            |            |                   |             |      |      |             |             | \$          | \$          | \$        | \$    |               |      | \$     | \$    | \$         |              |  |  |  |
| Resilience Improvements for pedestrians and bicyclists                                                                                                 | \$                                                                                                                                                                                                                                                                                                                                                                                      | \$    | \$  | ~\$  |               | ~\$         | ~\$   |     |     | \$         | ~\$         |            |            | ~\$~              | \$          | ~\$  |      |             | \$          | \$          | \$          | \$        | \$    | \$            |      | \$     | \$    | \$         |              |  |  |  |
| Road Diets (pedestrian and bicycle portions)                                                                                                           | \$                                                                                                                                                                                                                                                                                                                                                                                      | \$    | \$  | \$   |               | ~\$         | \$    |     |     |            |             |            |            | 9                 | 5           | \$   | \$   |             | \$          | \$          | \$          | \$        |       | \$            |      |        | \$    | \$         | \$           |  |  |  |

|                                                                                                                                         |       |       |            |             |        |               |              |            |              |     |             |            |                                                                                                                                                             |                                 |            |             |             |             |             |                    | <b>ransit</b> |           |            |             |      |             |              |            |       |
|-----------------------------------------------------------------------------------------------------------------------------------------|-------|-------|------------|-------------|--------|---------------|--------------|------------|--------------|-----|-------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------|-------------|-------------|-------------|-------------|--------------------|---------------|-----------|------------|-------------|------|-------------|--------------|------------|-------|
|                                                                                                                                         |       |       |            | Prog        |        | <u>y 111u</u> | or eng       | 1          |              |     |             |            | r, see program notes and guidance. ~\$ = Eligible, but not competitive unless part of a larger project.         ITSA         Federal Highway Administration |                                 |            |             |             |             |             |                    |               |           |            |             |      |             |              |            |       |
| Activity or Project Type                                                                                                                | RAISE | INFRA | <u>RCP</u> | <u>SS4A</u> | Thrive | <u>RRIF</u>   | <u>TIFIA</u> | <u>FTA</u> | <u>ATI '</u> | TOD | <u>AoPP</u> | <u>402</u> |                                                                                                                                                             | <u>BFP</u><br><u>BIP</u><br>BRR | <u>CRP</u> | <u>CMAQ</u> | <u>HSIP</u> | <u>RHCP</u> | <u>NHPP</u> | <u>PRO</u><br>TECT | STBG          | <u>TA</u> | <u>RTP</u> | <u>SRTS</u> | PLAN | <u>NSBP</u> | <u>FLTTP</u> | <u>TTP</u> | TTPSF |
| Road Safety Assessment for pedestrians and bicyclists                                                                                   |       |       | \$         | \$          | TA     |               | ~\$          |            |              |     | ~\$         |            |                                                                                                                                                             |                                 |            |             | \$          | \$          |             |                    | \$            | \$        |            |             | \$   |             | \$           | \$         | \$    |
| Safety education and awareness activities and programs to inform pedestrians, bicyclists, and motorists on ped/bike traffic safety laws |       |       |            | \$          |        |               |              |            |              |     | ~\$         | \$         | \$                                                                                                                                                          |                                 |            |             | \$          |             |             |                    | \$SRTS        | \$SRTS    |            | \$          | \$   |             |              | \$         |       |
| Safety education positions                                                                                                              |       |       |            | \$          |        |               |              |            |              |     | ~\$         | \$         |                                                                                                                                                             |                                 |            |             |             |             |             |                    | \$SRTS        | \$SRTS    |            | \$          |      |             |              | \$         |       |
| Safety enforcement (including police patrols)                                                                                           |       |       |            | \$          |        |               |              |            |              |     |             | \$         | \$                                                                                                                                                          |                                 |            |             | \$          |             |             |                    | \$SRTS        | \$SRTS    |            | \$          |      |             |              | \$         |       |
| Safety program technical assessment (for peds/bicyclists)                                                                               |       |       | \$         | ~\$         | TA     |               |              |            |              |     | ~\$         | \$         |                                                                                                                                                             |                                 |            |             | \$          |             |             |                    | \$SRTS        | \$SRTS    |            | \$          | \$   |             | \$           | \$         |       |
| Separated bicycle lanes                                                                                                                 | \$    | \$    | \$         | \$          |        | ~\$           | ~\$          | \$         | \$           |     | ~\$         |            |                                                                                                                                                             | \$                              | \$         | \$          | \$          | \$          | \$          | \$                 | \$            | \$        |            | \$          |      | \$          | \$           | \$         | \$    |
| Shared use paths / transportation trails                                                                                                | \$    | \$    | \$         | \$          |        | ~\$           | ~\$          | \$         | \$           |     | ~\$         |            |                                                                                                                                                             |                                 | \$         | \$          | \$          | \$          | \$          | \$                 | \$            | \$        | \$         | \$          |      | \$          | \$           | \$         | \$    |
| Sidewalks (new or retrofit)                                                                                                             | \$    | \$    | \$         | \$          |        | ~\$           | ~\$          | \$         | \$           | ~\$ | ~\$         |            |                                                                                                                                                             | \$                              | \$         | \$          | \$          | \$          | \$          | \$                 | \$            | \$        | \$         | \$          |      | \$          | \$           | \$         | \$    |
| Signs, signals, signal improvements (incl accessible pedestrian signals) see note                                                       | \$    | \$    | \$         | \$          |        | ~\$           | ~\$          | \$         | \$           | ~\$ | ~\$         |            |                                                                                                                                                             |                                 | \$         | \$          | \$          | \$          | \$          | \$                 | \$            | \$        |            | \$          |      | \$          | \$           | \$         | \$    |
| Signing for pedestrian or bicycle routes                                                                                                | \$    | \$    | \$         | \$          |        | ~\$           | ~\$          | \$         | \$           |     | ~\$         |            |                                                                                                                                                             |                                 | \$         | \$          | \$          |             | \$          | \$                 | \$            | \$        |            | \$          |      | \$          | \$           | \$         | \$    |
| Spot improvement programs (for pedestrian and bicycle facilities)                                                                       | \$    | \$    |            | \$          |        | ~\$           | ~\$          | \$         |              |     | ~\$         |            |                                                                                                                                                             |                                 | \$         |             | \$          | \$          | \$          |                    | \$            | \$        | \$         | \$          |      |             | \$           | \$         | \$    |
| Stormwater impacts related to pedestrian and bicycle project impacts                                                                    | \$    | \$    | \$         | ~\$         |        | ~\$           | ~\$          | \$         | \$           |     |             |            |                                                                                                                                                             |                                 |            |             | \$          | \$          | \$          | \$                 | \$            | \$        | \$         | \$          |      |             | \$           | \$         | \$    |
| Traffic calming                                                                                                                         | \$    | \$    | \$         | \$          |        | ~\$           | ~\$          | \$         |              |     |             |            |                                                                                                                                                             |                                 | \$         |             | \$          |             | \$          | \$                 | \$            | \$        |            | \$          |      |             | \$           | \$         | \$    |
| Trail bridges                                                                                                                           | \$    | \$    | \$         | ~\$         |        | ~\$           | \$           |            |              |     |             |            |                                                                                                                                                             |                                 | \$         | ~\$         | \$          | \$          | \$          | \$                 | \$            | \$        | \$         | \$          |      |             | \$           | \$         | \$    |
| Trail construction and maintenance equipment                                                                                            |       |       |            | ~\$         |        | ~\$           | ~\$          |            |              |     |             |            |                                                                                                                                                             |                                 | \$         |             |             |             |             |                    | \$            | \$        | \$         |             |      |             | ~\$          | ~\$        | ~\$   |
| Trail/highway crossings and intersections                                                                                               | \$    | \$    | \$         | \$          |        | ~\$           | ~\$          |            |              |     |             |            |                                                                                                                                                             | \$                              | \$         | ~\$         | \$          | \$          | \$          | \$                 | \$            | \$        | \$         | \$          |      | \$          | \$           | \$         | \$    |
| Trailside/trailhead facilities (restrooms, water, not general park amenities)                                                           | ~\$   |       |            |             |        | ~\$           | ~\$          |            |              |     |             |            |                                                                                                                                                             |                                 | ~\$        |             |             |             |             |                    | \$            | \$        | \$         |             |      | \$          | \$           | \$         |       |
| Training                                                                                                                                |       |       |            | \$          | TA     |               |              |            |              |     | ~\$         | \$         |                                                                                                                                                             |                                 |            | \$          | \$          |             |             |                    | \$            | \$        | \$         | \$          | \$   |             |              | \$         |       |
| Training for law enforcement on ped/bicyclist safety laws                                                                               |       |       |            | ~\$         |        |               |              |            |              |     |             | \$         | \$                                                                                                                                                          |                                 |            | ~\$         | \$          |             |             |                    | \$SRTS        | \$SRTS    |            | \$          |      |             |              | \$         |       |
| Tunnels / underpasses for pedestrians and/or bicyclists                                                                                 | \$    | \$    | \$         | \$          |        | \$            | \$           | \$         | \$           |     |             |            |                                                                                                                                                             |                                 | \$         | \$          | \$          | \$          | \$          | \$                 | \$            | \$        | \$         | \$          |      |             | \$           | \$         | \$    |
| Vulnerable Road User Safety Assessment                                                                                                  |       |       | \$         | \$          | TA     |               |              |            |              |     |             |            |                                                                                                                                                             |                                 |            |             | \$          |             |             |                    | \$            | \$        |            | \$          | \$   |             |              | \$         | \$    |

#### Abbreviations

ADA/504: Americans with Disabilities Act of 1990 / Section 504 of the Rehabilitation Act of 1973

RAISE: Rebuilding American Infrastructure with Sustainability and Equity

INFRA: Infrastructure for Rebuilding America Discretionary Grant Program

<u>RCP</u>: Reconnecting Communities Pilot Program

<u>SS4A</u>: Safe Streets and Roads for All

<u>Thrive</u>: Thriving Communities Initiative (TA: Technical Assistance)

RRIF: Railroad Rehabilitation and Improvement Financing (loans)

<u>TIFIA</u>: Transportation Infrastructure Finance and Innovation Act (loans)

<u>FTA</u>: Federal Transit Administration Capital Funds

ATI: Associated Transit Improvement (1% set-aside of FTA)

TOD: Transit-Oriented Development

AoPP: Areas of Persistent Poverty Program

NHTSA <u>402</u>: National Highway Traffic Safety Administration State and Community Highway Safety Grant Program

NHTSA 405: National Highway Traffic Safety Administration National Priority Safety Programs (Nonmotorized safety)

<u>BFP</u>: Bridge Formula Program; <u>BIP</u>: Bridge Investment Program; <u>BRR</u>: Bridge Replacement and Rehabilitation Program <u>CRP</u>: Carbon Reduction Program

CMAQ: Congestion Mitigation and Air Quality Improvement Program

HSIP: Highway Safety Improvement Program

RHCP: Railway-Highway Crossings (Section 130) Program

<u>NHPP</u>: National Highway Performance Program

PROTECT: Promoting Resilient Operations for Transformative, Efficient, and Cost Saving Transportation

STBG: Surface Transportation Block Grant Program

TA: Transportation Alternatives Set-Aside (formerly Transportation Alternatives Program, Transportation Enhancements)

**<u>RTP</u>**: Recreational Trails Program

<u>SRTS</u>: Safe Routes to School Program (and related activities)

PLAN: Statewide Planning and Research (SPR) or Metropolitan Planning funds

NSBP: National Scenic Byways Program

FLTTP: Federal Lands and Tribal Transportation Programs: Federal Lands Access Program, Federal Lands Transportation

Program, <u>Tribal Transportation Program</u>, <u>Federal Lands Planning Program</u> and related programs for Federal and Tribal lands such as the <u>Nationally Significant Federal Lands and Tribal Projects</u> program.

TTP: Tribal Transportation Program

TTPSF: Tribal Transportation Program Safety Fund

#### **Cross-cutting notes**

This table indicates potential eligibility for pedestrian, bicycle, and micromobility activities and projects under U.S. Department of Transportation surface transportation funding programs. Activities and projects must meet program eligibility requirements. See notes and links to program information below. Although the primary focus of this table is stand-alone activities and projects, programs also fund pedestrian and bicycle facilities as part of larger projects. Project sponsors are encouraged to consider <u>Complete Streets</u> and Networks that routinely integrate the safety, accessibility, equity, and convenience of walking and bicycling into surface transportation projects. In these instances, the Federal-aid eligibility of the pedestrian and bicycle elements are considered under the eligibility criteria applicable to the larger highway project. Pedestrian and bicycle activities also may be characterized as environmental mitigation for larger highway projects, especially in response to impacts to a Section 4(f) property or work zone safety, mobility, and accessibility impacts on bicyclists and pedestrians.

- See <u>FHWA Bicycle and Pedestrian Planning, Program, and Project Development</u> (Guidance)
- Bicycle Project Purpose: 23 U.S.C. 217(i) requires that bicycle facilities "be principally for transportation, rather than recreation, purposes". However, 23 U.S.C. 133(b)(7) and 133(h) authorize recreational trails under <u>STBG</u> and the <u>TA</u> <u>Set-Aside</u>, therefore, 23 U.S.C. 217(i) does not apply to trail projects (including for bicycle use) using <u>STBG</u> or <u>TA Set-Aside</u> funds. Section 217(i) applies to bicycle facilities other than trail-related projects, and section 217(i) applies to bicycle facilities using other programs (<u>NHPP</u>, <u>HSIP</u>, <u>CMAQ</u>). The transportation requirement under section 217(i) only applies to bicycle projects, not to any other trail use or transportation mode.
- Signs, signals, signal improvements includes ensuring accessibility for persons with disabilities. See <u>Accessible Pedestrian Signals</u>. See also <u>Proven Safety Countermeasures</u>, such as <u>Crosswalk Visibility Enhancements</u>, <u>Leading Pedestrian Interval</u> signals, <u>Pedestrian Hybrid Beacons</u>, and <u>Rectangular Rapid Flashing Beacons</u>.
- Occasional DOT or agency incentive grants may be available for specific research or technical assistance purposes.
- Aspects of DOT initiatives may be eligible as individual projects. Activities above may benefit safe, comfortable, multimodal networks; environmental justice; and equity.
- The DOT Navigator is a resource to help communities understand the best ways to apply for grants, and to plan for and deliver transformative infrastructure projects and services.
- FHWA's Policy on Using Bipartisan Infrastructure Law Resources to Build a Better America.
- FHWA Links to <u>Technical Assistance and Local Support</u>.

### **Program-specific notes**

Federal-aid and other DOT funding programs have specific requirements that projects must meet, and eligibility must be determined on a case-by-case basis. See links to program guidance for more information.

- RAISE (Infrastructure Investment and Jobs Act (Pub. L. 117-58) (IIJA), also known as the Bipartisan Infrastructure Law (BIL), § 21202): Funds capital and planning grants.
- INFRA (IIJA § 11110): For projects that improve safety, generate economic benefits, reduce congestion, enhance resiliency, and hold the greatest promise to eliminate freight bottlenecks and improve critical freight movements.
- <u>RCP</u> (IIJA § 11509 and div. J, title VIII, Highway Infrastructure Programs, para. (7)): See <u>RCP Program Notice of Funding Opportunity</u> for full details. Planning grants and Capital Construction Grants must relate to a transportation facility that creates a barrier to community connectivity.
- <u>SS4A</u> (IIJA § 24112): Discretionary program funds regional, local, and Tribal initiatives through grants to prevent roadway deaths and serious injuries. Projects must be identified in a comprehensive safety action plan (§ 24112(a)(3)).
- Thrive (Department of Transportation Appropriations Act, 2022 (Pub. L. 117-103, div. L, title I): Technical assistance, planning, and capacity-building support in selected communities.
- <u>RRIF</u> (Chapter 224 of title 49 U.S.C.): Program offers direct loans and loan guarantees for capital projects related to rail facilities, stations, or crossings. Pedestrian and bicycle infrastructure components of "economic development" projects located within <sup>1</sup>/<sub>2</sub>-mile of qualifying rail stations may be eligible. May be combined with other grant sources.
- <u>TIFIA</u> (Chapter 6 of title 23 U.S.C.): Program offers secured loans, loan guarantees, or standby lines of credit for capital projects. Minimum total project size is \$10 million; multiple surface transportation projects may be bundled to meet cost threshold, under the condition that all projects have a common repayment pledge. May be combined with other grant sources, subject to total Federal assistance limitations.
- <u>FTA</u> / <u>ATI</u> (49 U.S.C. 5307): Multimodal projects funded with FTA transit funds must provide access to transit. See <u>Bicycles and Transit</u>, <u>Flex Funding for Transit Access</u>, the FTA <u>Final Policy Statement on the Eligibility of Pedestrian</u> and <u>Bicycle Improvements Under Federal Transit Law</u>, and <u>FTA Program & Bicycle Related Funding Opportunities</u>.
- Bicycle infrastructure plans and projects must be within a 3-mile radius of a transit stop or station. If more than 3 miles, within a distance that people could be expected to safely and conveniently bike to the particular stop or station.
- Pedestrian infrastructure plans and projects must be within a ½ mile radius of a transit stop or station. If more than ½ mile, within a distance that people could be expected to safely and conveniently walk to the particular stop or station.
- FTA funds cannot be used to purchase bicycles for bike share systems.
- FTA TOD: Provides planning grants to support community efforts to improve safe access to public transportation for pedestrians and cyclists. The grants help organizations plan for transportation projects that connect communities and improve access to transit and affordable housing, not for capital purchases.
- FTA AoPP (Further Consolidated Appropriations Act, 2020 (Pub. L. 116-94); Consolidated Appropriations Act, 2021 (Pub. L. 116-260)): Promotes multimodal planning, engineering, and technical studies, or financial planning to improve transit services in areas experiencing long-term economic distress, not for capital purchases.
- NHTSA 402 (23 U.S.C. 402): Project activity must be included in the State's Highway Safety Plan. Contact the State Highway Safety Office for details.
- NHTSA 405 (23 U.S.C. 405): Funds are subject to eligibility, application, and award. Project activity must be included in the State's Highway Safety Plan. Contact the State Highway Safety Office for details. The Bipartisan Infrastructure Law expanded the eligible use of funds for a Section 405 Nonmotorized Safety grant beginning in FY 2023; however, for FY 2023 grants, FAST Act eligible uses remain in place.
- <u>BFP</u>, (IIJA, Div. J, title VIII, para. (1)), <u>BIP</u> (23 U.S.C. 124), <u>BRR</u> (Department of Transportation Appropriations Act, 2022): For specific highway bridge projects and highway bridge projects that will replace or rehabilitate a bridge must consider pedestrian and bicycle access as part of the project and costs related to their inclusion are eligible under these programs.
- CRP (23 U.S.C. 175): Projects should support the reduction of carbon dioxide emissions from on-road highway sources.

- <u>CMAQ</u> (23 U.S.C. 149): Projects must demonstrate emissions reduction and benefit air quality. See the CMAQ guidance at <u>www.fhwa.dot.gov/environment/air\_quality/cmaq/</u> for a list of projects that may be eligible for CMAQ funds. CMAQ funds may be used for shared use paths, but not for trails that are primarily for recreational use.
- HSIP (23 U.S.C. 148): Projects must be consistent with a State's <u>Strategic Highway Safety Plan</u> and (1) correct or improve a hazardous road location or feature, or (2) address a highway safety problem. Certain non-infrastructure safety projects can also be funded using HSIP funds as specified safety projects.
- <u>RHCP</u> (23 U.S.C. 130): Projects at all public railroad crossings including roadways, bike trails, and pedestrian paths.
- NHPP (23 U.S.C. 119): Projects must benefit National Highway System (NHS) corridors and must be located on land adjacent to any highway on the National Highway System (23 U.S.C. 217(b)).
- <u>PROTECT</u> (23 U.S.C. 176): Funds can only be used for activities that are primarily for the purpose of resilience or inherently resilience related. With certain exceptions, the focus must be on supporting the incremental cost of making assets more resilient.
- <u>STBG</u> (23 U.S.C. 133) and <u>TA Set-Aside</u> (23 U.S.C. 133(h)): Activities marked "\$SRTS" means eligible only as an SRTS project benefiting schools for kindergarten through 12<sup>th</sup> grade. Bicycle transportation nonconstruction projects related to safe bicycle use are eligible under STBG, but not under TA (23 U.S.C. 217(a)). There is broad eligibility for projects under 23 U.S.C. 206, 208, and 217.
- RTP (23 U.S.C. 206): Projects for trails and trailside and trailhead facilities for any recreational trail use. RTP projects are eligible under TA Set-Aside and STBG.
- SRTS (23 U.S.C. 208): Projects for any SRTS activity. FY 2012 was the last year for dedicated funds, but funds are available until expended. SRTS projects are eligible under TA Set-Aside and STBG.
- PLAN (23 U.S.C. 134 and 135): Funds must be used for planning purposes, for example: Maps: System maps and GIS; Safety education and awareness: for transportation safety planning; Safety program technical assessment: for transportation safety planning; Training: bicycle and pedestrian system planning training.
- NSBP (23 U.S.C. 162): Discretionary program subject to annual appropriations. Projects must directly benefit and be close to a designated scenic byway.
- <u>FLTTP</u> (23 U.S.C. 201-204): Projects must provide access to or within Federal or tribal lands. Programs include: Federal Lands and Tribal Transportation Program, <u>Federal Lands Access Program</u>, <u>Federal Lands Transportation Program</u>, <u>Federal Lands and Tribal lands</u> and <u>Tribal lands such as the Nationally Significant Federal Lands and Tribal Projects</u> (NSFLTP) program.
- <u>Federal Lands Transportation Program</u> (23 U.S.C. 203): For Federal agencies for projects that provide access within Federal lands.
- Federal Lands Access Program (FLAP) (23 U.S.C. 204): For State and local entities for projects that provide access to or within Federal or tribal lands.
- TTP (23 U.S.C. 202): For federally-recognized tribal governments for projects within tribal boundaries and public roads that access tribal lands.
- <u>TTPSF</u> (23 U.S.C. 202(e)(1) and 23 U.S.C. 148(a)(4)): Grants available to <u>federally recognized Indian tribes</u> through a competitive, discretionary program to plan and implement transportation safety projects.



Rhode Island Massachusetts Connecticut New Hampshire

## www.BETA-Inc.com

